Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations

Abstract

Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core–corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder–cylinder and platelet–cylinder connections, respectively, that involve different core-forming metalloblocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM micrographs of PI76-b-PFS76 crystals and scarf-shaped architectures with PI342-b-PFS57 tassels.
Figure 2: AFM phase images of micelle brushes on a crystalline surface.
Figure 3: TEM micrographs and EDX analysis of heteroepitaxially grown triblock co-micelles.
Figure 4: TEM micrographs of heteroepitaxially grown pentablock co-micelles.
Figure 5: TEM micrographs and EDX analysis of heteroepitaxially grown scarf-like architectures.

Similar content being viewed by others

References

  1. Gohy, J.-F. Block copolymer micelles. Adv. Polym. Sci. 190, 65–136 (2005).

    Article  CAS  Google Scholar 

  2. Lazzari, M. & López-Quintela, M. A. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater. 15, 1583–1594 (2003).

    Article  CAS  Google Scholar 

  3. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  4. Won, Y.-Y., Davis, H. T. & Bates, F. S. Giant wormlike rubber micelles. Science 283, 960–963 (1999).

    Article  CAS  Google Scholar 

  5. Jain, S. & Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 300, 460–464 (2003).

    Article  CAS  Google Scholar 

  6. Savic, R., Luo, L., Eisenberg, A. & Maysinger, D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618 (2003).

    Article  CAS  Google Scholar 

  7. Hu, J., Liu, G. & Nijkang, G. Hierarchical interfacial assembly of ABC triblock copolymer. J. Am. Chem. Soc. 130, 3236–3237 (2008).

    Article  CAS  Google Scholar 

  8. Kim, Y., Dalhaimer, P., Christian, D. A. & Discher, D. E. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology 16, S484–S492 (2005).

    Article  Google Scholar 

  9. Cao, L. et al. Reactive ion etching of cylindrical polyferrocenylsilane block copolymer micelles: Fabrication of ceramic nanolines on semiconducting substrates. Adv. Funct. Mater. 13, 271–276 (2003).

    Article  CAS  Google Scholar 

  10. Zhang, L. & Eisenberg, A. Multiple morphologies of ‘crew-cut’ aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728–1731 (1995).

    Article  CAS  Google Scholar 

  11. Zhang, L., Yu, K. & Eisenberg, A. Ion-induced morphological changes in ‘crew-cut’ aggregates of amphiphilic block copolymers. Science 272, 1777–1779 (1996).

    Article  CAS  Google Scholar 

  12. Abbas, S., Li, Z., Hassan, H. & Lodge, T. P. Thermoreversible morphology transitions of poly(styrene-b-dimethylsiloxane) diblock copolymer micelles in dilute solution. Macromolecules 40, 4048–4052 (2007).

    Article  CAS  Google Scholar 

  13. Yuan, J. et al. Water-soluble organo-silica hybrid nanowires. Nature Mater. 7, 718–722 (2008).

    Article  CAS  Google Scholar 

  14. Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    Article  CAS  Google Scholar 

  15. Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article  CAS  Google Scholar 

  16. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    Article  CAS  Google Scholar 

  17. Massey, J. A. et al. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).

    Article  CAS  Google Scholar 

  18. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  19. Cao, L., Manners, I. & Winnik, M. A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: Solution self-assembly of coil-crystalline poly(isoprene-block-ferrocenylsilane). Macromolecules 35, 8258–8260 (2002).

    Article  CAS  Google Scholar 

  20. Lammertink, R. G. H., Hempenius, M. A. & Vancso, G. J. Crystallization kinetics and morphology of poly(ferrocenyldimethylsilane). Macromol. Chem. Phys. 199, 2141–2145 (1998).

    Article  CAS  Google Scholar 

  21. Papkov, V. S. et al. Crystalline structure of some poly(ferrocenylenedialkylsilylenes). Macromolecules 33, 7107–7115 (2000).

    Article  CAS  Google Scholar 

  22. Chen, Z. et al. Structure of poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 34, 6156–6158 (2001).

    Article  CAS  Google Scholar 

  23. Ayers, J. E. Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (CRC Press, 2007).

    Book  Google Scholar 

  24. Yan, L. et al. Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition. Angew. Chem. Int. Ed. 46, 4539–4542 (2007).

    Article  CAS  Google Scholar 

  25. Wittmann, J. C., Hodge, A. M. & Lotz, B. Epitaxial crystallization of polymers onto benzoic acid: Polyethylene and paraffins, aliphatic polyesters, and polyamides. J. Polym. Sci. Polym. Phys. Ed. 21, 2495–2509 (1983).

    Article  CAS  Google Scholar 

  26. Wittmann, J. C. & Lotz, B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agents. J. Polym. Sci. Polym. Phys. Ed. 19, 1837–1851 (1981).

    Article  CAS  Google Scholar 

  27. Peckham, T. J., Massey, J. A., Edwards, M., Manners, I. & Foucher, D. A. Synthesis, characterization, and properties of high molecular weight poly(ferrocenylgermanes) and poly(ferrocenylsilane)-poly(ferrocenylgermane) random copolymers. Macromolecules 29, 2396–2403 (1996).

    Article  CAS  Google Scholar 

  28. Manners, I. Putting metals into polymers. Science 294, 1664–1666 (2001).

    Article  CAS  Google Scholar 

  29. Bellas, V. & Rehahn, M. Polyferrocenylsilane-based polymer systems. Angew. Chem. Int. Ed. 46, 5082–5104 (2007).

    Article  CAS  Google Scholar 

  30. Korczagin, I., Lammertink, R. G. H., Hempenius, M. A., Golze, S. & Vancso, G. J. Surface nano- and microstructuring with organometallic polymers. Adv. Polym. Sci. 200, 91–117 (2006).

    Article  CAS  Google Scholar 

  31. Wang, X. S., Wang, H., Coombs, N., Winnik, M. A. & Manners, I. Redox-induced synthesis and encapsulation of metal nanoparticles in shell-crosslinked organometallic nanotubes. J. Am. Chem. Soc. 127, 8924–8925 (2005).

    Article  CAS  Google Scholar 

  32. Wang, H. et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 129, 12924–12925 (2007).

    Article  CAS  Google Scholar 

  33. Ni, Y., Rulkens, R. & Manners, I. Transition metal-based polymers with controlled architectures: Well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J. Am. Chem. Soc. 118, 4102–4114 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the European Union and NSERC (Canada) for financial support. T.G. is grateful to the Deutsche Forschungsgemeinschaft for a postdoctoral fellowship. I.M. thanks the European Union for a Marie Curie Chair and the Royal Society for a Wolfson Research Merit Award. We also thank G. Orpen, S. Davis and J. Mitchels for helpful discussions and, in the last case, also assistance concerning the AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitchell A. Winnik or Ian Manners.

Supplementary information

Supplementary Information

Supplementary Information (PDF 966 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gädt, T., Ieong, N., Cambridge, G. et al. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nature Mater 8, 144–150 (2009). https://doi.org/10.1038/nmat2356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing