Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coherent X-ray diffraction imaging of strain at the nanoscale

Abstract

The understanding and management of strain is of fundamental importance in the design and implementation of materials. The strain properties of nanocrystalline materials are different from those of the bulk because of the strong influence of their surfaces and interfaces, which can be used to augment their function and introduce desirable characteristics. Here we explain how new X-ray diffraction techniques, which take advantage of the latest synchrotron radiation sources, can be used to obtain quantitative three-dimensional images of strain. These methods will lead, in the near future, to new knowledge of how nanomaterials behave within active devices and on unprecedented timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the isostrain method used to measure the strain inside quantum dot structures30.
Figure 2: Strain due to patterning of silicon.
Figure 3: Visualization of strain inside a Pb nanocrystal.
Figure 4: New results from CXD experiments ongoing at APS beamline 34-ID-C.

Similar content being viewed by others

References

  1. Pauling, L. The Nature of the Chemical Bond, and the Structure of Molecules and Crystals (Cornell Univ. Press, 1960).

    Google Scholar 

  2. Buffat, P. & Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2297 (1975).

    Article  Google Scholar 

  3. Madey, T. E., Chen, W., Wang, H., Kaghazchi, P. & Jacob, T. Nanoscale surface chemistry over faceted substrates: structure, reactivity and nanotemplates. Chem. Soc. Rev. 37, 2310–2327 (2008).

    Article  CAS  Google Scholar 

  4. Yu, H., Li, J. B., Loomis, R. A., Wang, L. W. & Buhro, W. E. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Mater. 2, 517–520 (2003).

    Article  CAS  Google Scholar 

  5. Hodge, A. M. et al. Scaling equation for yield strength of nanoporous open-cell foams. Acta Math. 55, 1343–1349 (2007).

    Article  CAS  Google Scholar 

  6. Fritz, D. M. et al. Ultrafast bond softening in bismuth: Mapping a solid's interatomic potential with X-rays. Science 315, 633–636 (2007).

    Article  CAS  Google Scholar 

  7. Vartanyants, I. A. et al. Coherent X-ray scattering and lensless imaging at the European XFEL facility. J. Synchrotron Radiat. 14, 453–470 (2007).

    Article  CAS  Google Scholar 

  8. McCartney, M. R. & Smith, D. J. Electron holography: Phase imaging with nanometer resolution. Annu. Rev. Mater. Res. 37, 729–767 (2007).

    Article  CAS  Google Scholar 

  9. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271–280 (2009).

    Article  CAS  Google Scholar 

  10. Kim, M., Zuo, J. M. & Park, G. S. High-resolution strain measurement in shallow trench isolation structures using dynamic electron diffraction. Appl. Phys. Lett. 84, 2181–2183 (2004).

    Article  CAS  Google Scholar 

  11. Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–511 (2008).

    Article  CAS  Google Scholar 

  12. Varela, M. et al. Materials characterization in the aberration corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005).

    Article  CAS  Google Scholar 

  13. Hytch, M., Houdellier, F., Hue, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).

    Article  CAS  Google Scholar 

  14. Ade, H. & Stoll, H. Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nature Mater. 8, 281–290 (2009).

    Article  CAS  Google Scholar 

  15. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  CAS  Google Scholar 

  16. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  CAS  Google Scholar 

  17. Larson, B. C., Yang, W., Ice, G. E., Budai, J. D. & Tischler, J. Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002).

    Article  CAS  Google Scholar 

  18. Schmidt, S. et al. Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229–232 (2004).

    Article  CAS  Google Scholar 

  19. Ice, G. E. & Larson, B. C. Three-dimensional X-ray structural microscopy using polychromatic microbeams. Mater. Res. Soc. Bull. 29, 170–176 (2004).

    Article  CAS  Google Scholar 

  20. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  21. Metzger, T. H., Schulli, T. U. & Schmidbauer, M. X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures. C. R. Phys. 6, 47–59 (2005).

    Article  CAS  Google Scholar 

  22. Krause, B. et al. Shape, strain, and ordering of lateral InAs quantum dot molecules. Phys. Rev. B 72, 085339 (2005).

    Article  Google Scholar 

  23. Plantevin, O., Gago, R., Vazquez, L., Biermanns, A. & Metzger, T. H. In situ X-ray scattering study of self-organized nanodot pattern formation on GaSb(001) by ion beam sputtering. Appl. Phys. Lett. 91, 113105 (2007).

    Article  Google Scholar 

  24. Malachias, A. et al. X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001). Phys. Rev. B 72, 165315 (2005).

    Article  Google Scholar 

  25. Richard, M. I. & Metzger, T. H. Defect cores investigated by X-ray scattering close to forbidden reflections in silicon. Phys. Rev. Lett. 99, 225504 (2007).

    Article  Google Scholar 

  26. Malachias, A., Metzger, T. H., Stoffel, M., Schmidt, O. G. & Holy, V. Composition and atomic ordering of Ge/Si(001) wetting layers. Thin Solid Films 515, 5587–5592 (2007).

    Article  CAS  Google Scholar 

  27. Brehm, M. et al. Quantitative determination of Ge profiles across SiGe wetting layers on Si (001). Appl. Phys. Lett. 93, 121901 (2008).

    Article  Google Scholar 

  28. Matthews, J. W. & Blakeslee, A. E. J. Cryst. Growth 32, 265–273 (1976).

    Article  CAS  Google Scholar 

  29. Fiory, A. T., Bean, J. C., Feldman, L. C. & Robinson, I. K. Commensurate and incommensurate structures in molecular beam epitaxially grown GexSi1-x films on Si(100). J. Appl. Phys. 56, 1227–1229 (1984).

    Article  CAS  Google Scholar 

  30. Kegel, I. et al. Determination of strain fields and composition of self-organized quantum dots using X-ray diffraction. Phys. Rev. B 63, 035318 (2001).

    Article  Google Scholar 

  31. Malachias, A. et al. 3D composition of epitaxial nanocrystals by anomalous x-ray diffraction: Observation of a Si-rich core in Ge domes on Si(100). Phys. Rev. Lett. 91, 176101 (2003).

    Article  CAS  Google Scholar 

  32. Zhong, Z., Chen, P., Jiang, Z. & Bauer, G. Temperature dependence of ordered GeSi island growth on patterned Si(001) substrates. Appl. Phys. Lett. 93, 043106 (2008).

    Article  Google Scholar 

  33. Gailhanou, M. et al. Strain field in silicon on insulator lines using high resolution X-ray diffraction. Appl. Phys. Lett. 90, 111914 (2007).

    Article  Google Scholar 

  34. Lagally, M. G. & Rugheimer, P. P. Strain engineering in germanium quantum dot growth on silicon and silicon-on-insulator. Jpn. J. Appl. Phys. 41, 4863–4866 (2002).

    Article  CAS  Google Scholar 

  35. Prevot, G. & Croset, B. Elastic relaxations and interactions on metallic vicinal surfaces: Testing the dipole model. Phys. Rev. B 74, 235410 (2006).

    Article  Google Scholar 

  36. Eberlein, M. et al. Investigation by high resolution X-ray diffraction of the local strains induced in Si by periodic arrays of oxide filled trenches. Phys. Status Solidi A 204, 2542–2547 (2007).

    Article  CAS  Google Scholar 

  37. Minkevich, A. A. et al. Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm. Phys. Rev. B 76, 104106 (2007).

    Article  Google Scholar 

  38. Sutton, M. et al. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608–610 (1991).

    Article  Google Scholar 

  39. Miao, J. & Sayre, D. On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallogr. A 56, 596–605 (2000).

    Article  Google Scholar 

  40. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  CAS  Google Scholar 

  41. Landau, L. & Lifshitz, E. Theory of Elasticity (Pergamon, 1986).

    Google Scholar 

  42. Harder, R., Pfeifer, M. A., Williams, G. J., Vartaniants, I. A. & Robinson, I. K. Orientation variation of surface strain. Phys. Rev. B 76, 115425 (2007).

    Article  Google Scholar 

  43. Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603–649 (1994).

    Article  CAS  Google Scholar 

  44. Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774 (1948).

    Article  CAS  Google Scholar 

  45. Jefimovs, K. et al. Fabrication of Fresnel zone plates for hard X-rays. Microelectr. Engineer. 84, 1467–1470 (2007).

    Article  CAS  Google Scholar 

  46. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).

    Article  CAS  Google Scholar 

  47. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  48. Schroer, C. G. et al. Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008).

    Article  CAS  Google Scholar 

  49. Abbey, B. et al. Keyhole coherent diffractive imaging. Nature Phys. 4, 394–398 (2008).

    Article  CAS  Google Scholar 

  50. Williams, G. J. et al. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97, 025506 (2006).

    Article  CAS  Google Scholar 

  51. Quiney, H. M., Peele, A. G., Cai, Z., Paterson, D. & Nugent, K. A. Diffractive imaging of highly focused X-ray fields. Nature Phys. 2, 101–104 (2006).

    Article  CAS  Google Scholar 

  52. Huang, W. J. et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nature Mater. 7, 308–313 (2008).

    Article  CAS  Google Scholar 

  53. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a single double-wall carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003).

    Article  CAS  Google Scholar 

  54. Murray, C. B. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001).

    Article  CAS  Google Scholar 

  55. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  Google Scholar 

  56. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843–843 (1952).

    Article  Google Scholar 

  57. Shannon, C. Communication in the presence of noise. Proc. Inst. Radio Engineers 37, 10–21 (1949).

    Google Scholar 

  58. Bates, R. H. T. Fourier phase problems are uniquely solvable in more than one dimension. 1. Underlying theory. Optik 61, 247–262 (1982).

    Google Scholar 

  59. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  CAS  Google Scholar 

  60. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Effectiveness of iterative algorithms in recovering phase in the presence of noise. Acta Crystallogr. A 63, 36–42 (2007).

    Article  CAS  Google Scholar 

  61. Vartanyants, I. A., Pitney, J. A., Libbert, J. L. & Robinson, I. K. Reconstruction of surface morphology from coherent X-ray reflectivity. Phys. Rev. B 55, 13193–13202 (1997).

    Article  CAS  Google Scholar 

  62. Vartanyants, I. A. & Robinson, I. K. Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction. J. Phys. Condens. Matter 13, 10593–10611 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the collaboration of M. Watari, M. Newton, S. J. Leake, R. A. McKendry and G. Aeppli in the experimental work presented in Fig. 4. That previously unpublished research was supported by a Royal Society Wolfson Award, a European Seventh Framework Programme Advanced Grant and the Engineering and Physical Sciences Research Council grant EP/D052939/1. The CXD instrumentation, based at APS beamline 34-ID-C, was built with US National Science Foundation grant DMR-9724294 and supported by the Materials Research Laboratory of the University of Illinois under US Department of Energy (DOE) contract DEFG02-91ER45439. The APS is operated by the US DOE contract number W 31 109 ENG 38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, I., Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nature Mater 8, 291–298 (2009). https://doi.org/10.1038/nmat2400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing