Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles

Abstract

Solid-state ionic conductors are actively studied for their large application potential in batteries1 and sensors. From the view of future nanodevices2,3,4,5, nanoscaled ionic conductors are attracting much interest. Silver iodide (AgI) is a well-known ionic conductor for which the high-temperature α-phase shows a superionic conductivity greater than 1 Ω−1 cm−1 (ref. 6). Below 147 C, α-AgI undergoes a phase transition into the poorly conducting β- and γ-polymorphs, thereby limiting its applications. Here, we report the facile synthesis of variable-size AgI nanoparticles coated with poly-N-vinyl-2-pyrrolidone (PVP) and the controllable tuning of the α- to β-/γ-phase transition temperature (Tc↓). Tc↓ shifts considerably to lower temperatures with decreasing nanoparticle size, leading to a progressively enlarged thermal hysteresis. Specifically, when the size approaches 10–11 nm, the α-phase survives down to 30 C—the lowest temperature for any AgI family material. We attribute the suppression of the phase transition not only to the increase of the surface energy, but also to the presence of defects and the accompanying charge imbalance induced by PVP. Moreover, the conductivity of as-prepared 11 nm β-/γ-AgI nanoparticles at 24 C is 1.5×10−2 Ω −1 cm−1—the highest ionic conductivity for a binary solid at room temperature. The stabilized superionic phase and the remarkable transport properties at a practical temperature reported here suggest promising applications in silver-ion-based electrochemical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size dependence of the phase transition characteristics in AgI nanoparticles.
Figure 2: Structural characterization of 11 nm AgI nanoparticles.
Figure 3: Transport behaviour of 11 nm AgI nanoparticles.
Figure 4: 109Ag NMR spectra of 10 nm AgI nanoparticles.

Similar content being viewed by others

References

  1. Owens, B. B. Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century. J. Power Sources 90, 2–8 (2000).

    Article  CAS  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  3. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  4. Guo, Y. G., Hu, J. S. & Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008).

    Article  CAS  Google Scholar 

  5. Rolison, D. R. et al. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226–252 (2009).

    Article  CAS  Google Scholar 

  6. Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).

    Article  CAS  Google Scholar 

  7. Bradley, J. N. & Greene, P. D. Solids with high ionic conductivity in Group 1 halide systems. Trans. Faraday Soc. 63, 424–430 (1967).

    Article  CAS  Google Scholar 

  8. Shahi, K. & Wagner, J. B. Jr. Fast ion transport in silver halide solid solutions and multiphase systems. Appl. Phys. Lett. 37, 757–759 (1980).

    Article  CAS  Google Scholar 

  9. Noelting, J. & Bunsenges, B. Thermodynamic investigation of the silver and copper(I) halide systems. I. The AgI–CuI system. J. Phys. Chem. 68, 932–939 (1964).

    CAS  Google Scholar 

  10. Shahi, K. & Wagner, J. B. Jr. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI. J. Electrochem. Soc. 128, 6–13 (1981).

    Article  CAS  Google Scholar 

  11. Lee, J. S., Adams, S. & Maier, J. Transport and phase transition characteristics in AgI:Al2O3 composite electrolytes. J. Electrochem. Soc. 147, 2407–2418 (2000).

    Article  CAS  Google Scholar 

  12. Tatsumisago, M., Shinkuma, Y. & Minami, T. Stabilization of superionic α-AgI at room temperature in a glass matrix. Nature 354, 217–218 (1991).

    Article  CAS  Google Scholar 

  13. Saito, T., Tatsumisago, M., Torata, N. & Minami, T. Stabilization process of α-AgI particles dispersed in glass matrices at room temperature. Solid State Ion. 19, 279–283 (1995).

    Article  Google Scholar 

  14. Takagi, M. Electron-diffraction study of liquid-solid transition of thin metal films. J. Phys. Soc. Jpn 9, 359–363 (1954).

    Article  Google Scholar 

  15. Blackman, M. & Sambles, J. R. Melting of very small particles during evaporation at constant temperature. Nature 226, 938–938 (1970).

    Article  CAS  Google Scholar 

  16. Couchman, P. R. & Jesser, W. A. Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481–483 (1977).

    Article  CAS  Google Scholar 

  17. Singh, V. N. & Mehta, B. R. Nanoparticle size-dependent lowering of temperature for phase transition from In(OH)3 to In2O3 . J. Nanosci. Nanotechnol. 5, 431–435 (2005).

    Article  CAS  Google Scholar 

  18. Hoshina, T., Kakemoto, H., Tsurumi, T., Wada, S. & Yashima, M. Size and temperature induced phase transition behaviors of barium titanate nanoparticles. Appl. Phys. Lett. 99, 054311 (2006).

    Google Scholar 

  19. Chernyshova, I. V., Hochella, M. F. Jr & Madden, A. S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9, 1736–1750 (2007).

    Article  CAS  Google Scholar 

  20. Bandaranayake, R. J., Wen, G. W., Lin, J. Y., Jiang, H. X. & Sorensen, C. M. Structural phase behavior in II–VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831–833 (1995).

    Article  CAS  Google Scholar 

  21. Guo, Y. G., Lee, J. S. & Maier, J. AgI nanoplates with mesoscopic superionic conductivity at room temperature. Adv. Mater. 17, 2815–2819 (2005).

    Article  CAS  Google Scholar 

  22. Guo, Y. G., Lee, J. S., Hu, Y. S. & Maier, J. AgI nanoplates in unusual 7H/9R structures. Highly ionically conducting polytype heterostructures. J. Electrochem. Soc. 154, K51–K60 (2007).

    Article  CAS  Google Scholar 

  23. Liang, C., Terabe, K., Hasegawa, T. & Aono, M. Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina template. J. Appl. Phys. 102, 124308 (2007).

    Article  Google Scholar 

  24. Hanaya, M., Osawa, I. & Watanabe, K. XRD and thermal studies of AgI confined in nm-size pores by forming porous silica-AgI composites. J. Therm. Anal. Cal. 76, 529–536 (2004).

    Article  CAS  Google Scholar 

  25. Baryshnikov, S. V. et al. Superionic phase transition in AgI embedded in molecular sieves. J. Phys. Condens. Matter 20, 025214 (2008).

    Article  Google Scholar 

  26. Reddy, M. J., Rao, S. S., Laxminarsaiah, E. & Rao, U. V. S. Study of a thin film electrochemical cell based on (PVP+AgNO3) electrolyte. Solid State Ion. 80, 93–98 (1995).

    Article  Google Scholar 

  27. Maier, J. Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995).

    Article  CAS  Google Scholar 

  28. Agrawal, R. C. & Gupta, R. K. Superionic solid: Composite electrolyte phase—an overview. J. Mater. Sci. 34, 1131–1162 (1999).

    Article  CAS  Google Scholar 

  29. Kuwata, N., Saito, T., Tatsumisago, M., Minami, T. & Kawamura, J. Cation dynamics of stabilized α-AgI in AgI–Ag2O–MoO3 glasses, studied by Ag-109 NMR spectroscopy. J. Non-Cryst. Solids 324, 79–91 (2003).

    Article  CAS  Google Scholar 

  30. Nishibori, E. et al. The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Methods A 467-468, 1045–1048 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank JSPS for financial support under Grants-in-Aid for Scientific Research (B) (No. 20350030) and for Challenging Exploratory Research (No. 20655030) and under the Global COE Program ‘Science for Future Molecular Systems’ and SPring-8 for access to the synchrotron X-ray facilities.

Author information

Authors and Affiliations

Authors

Contributions

H.K. was responsible for designing and coordinating this study. R.M. interpreted and discussed the results and carried out synthesis, conductivity measurements and Rietveld refinements. T. Yonemura carried out synthesis, DSC and NMR measurements. T. Yamada and M.Y. were involved in experiments and discussion. M.Y. and R.I. contributed to the NMR measurements. T. Yonemura, K.K. and M.T. carried out the synchrotron XRD measurements. All authors commented on the paper. R.M and H.K. were responsible for writing the paper.

Corresponding authors

Correspondence to Rie Makiura or Hiroshi Kitagawa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makiura, R., Yonemura, T., Yamada, T. et al. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nature Mater 8, 476–480 (2009). https://doi.org/10.1038/nmat2449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing