Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective positioning of organic dyes in a mesoporous inorganic oxide film

Abstract

Although sequential adsorption of dyes in a single TiO2 electrode is ideal to extend the range of light absorption in dye-sensitized solar cells, high-temperature processing has so far limited its application. We report a method for selective positioning of organic dye molecules with different absorption ranges in a mesoporous TiO2 film by mimicking the concept of the stationary phase and the mobile phase in column chromatography, where polystyrene-filled mesoporous TiO2 film is explored for use as a stationary phase and a Brønsted-base-containing polymer solution is developed for use as a mobile phase for selective desorption of the adsorbed dye. By controlling the desorption and adsorption depth, yellow, red and green dyes were vertically aligned within a TiO2 film, which is confirmed by an electron probe micro-analyser. The external quantum efficiency (EQE) spectrum from a solar cell with three selectively positioned dyes reveals the EQE characteristics of each single-dye cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication process for selective positioning of two different dyes in a mesoporous TiO2 film.
Figure 2: EPMA images showing the effects of PPG and NaOH concentration on desorption of N719.
Figure 3: Ruthenium EPMA images of N749 dye adsorbed on TiO2 film in the presence of polystyrene for different adsorption times.
Figure 4: Ultraviolet–visible spectra of N719 desorption and N749 adsorption.
Figure 5: Selective positioning of P5, N719 and N749 dyes.
Figure 6: Photocurrent–voltage curves and Nyquist plots from the impedance measurement.

Similar content being viewed by others

References

  1. Kohli, P. & Blanchard, G. J. Design and demonstration of hybrid multilayer structures: Layer-by-layer mixed covalent and ionic interlayer linking chemistry. Langmuir 16, 8518–8524 (2000).

    Article  CAS  Google Scholar 

  2. Crespo-Biel, O. et al. Patterned, hybrid, multilayer nanostructures based on multivalent supramolecular interactions. Chem. Mater. 18, 2545–2551 (2006).

    Article  CAS  Google Scholar 

  3. Isaacs, S. R., Choo, H., Ko, W. B. & Shon, Y. S. Chemical, thermal, and ultrasonic stability of hybrid nanoparticles and nanoparticle multilayer films. Chem. Mater. 18, 107–114 (2006).

    Article  CAS  Google Scholar 

  4. Kang, E.-H. et al. Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores. Langmuir 23, 7594–7601 (2007).

    Article  CAS  Google Scholar 

  5. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n). Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  6. Pan, L. et al. RPM-1: A recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption. Angew. Chem. Int. Ed. Engl. 42, 542–546 (2003).

    Article  CAS  Google Scholar 

  7. Han, S. J., Sohn, K. & Hyeon, T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chem. Mater. 12, 3337–3341 (2000).

    Article  CAS  Google Scholar 

  8. Zhao, X. B. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306, 1012–1015 (2004).

    Article  CAS  Google Scholar 

  9. Guillou, N. et al. Nickel(II) phosphate VSB-5: A magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew. Chem. Int. Ed. Engl. 40, 2831–2834 (2001).

    Article  CAS  Google Scholar 

  10. Qi, D. F. et al. Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett. 3, 1265–1268 (2003).

    Article  CAS  Google Scholar 

  11. Oregan, B. & Gratzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  12. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    Article  CAS  Google Scholar 

  13. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  14. Hatzor, A. et al. A metal-ion coordinated hybrid multilayer. Langmuir 16, 4420–4423 (2000).

    Article  CAS  Google Scholar 

  15. Xu, X. R., Han, J. T. & Cho, K. Fabrication of a stable inorganic-organic hybrid multilayer film with uniform and dense inorganic nanoparticle deposition. Chem. Commun. 8, 966–967 (2003).

    Article  Google Scholar 

  16. Zhang, M. N. et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction. Langmuir 20, 8781–8785 (2004).

    Article  CAS  Google Scholar 

  17. Kuang, D. et al. Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23, 10906–10909 (2007).

    Article  CAS  Google Scholar 

  18. Cid, J.-J. et al. Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 46, 8358–8362 (2007).

    Article  CAS  Google Scholar 

  19. Wei, M. D. et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. J. Mater. Chem. 16, 1287–1293 (2006).

    Article  CAS  Google Scholar 

  20. van de Lagemaat, J., Park, N.-G. & Frank, A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 104, 2044–2052 (2000).

    Article  CAS  Google Scholar 

  21. Kern, R. et al. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213–4225 (2002).

    Article  CAS  Google Scholar 

  22. Fabregat-Santiagoa, F. et al. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 87, 117–131 (2005).

    Article  Google Scholar 

  23. Wang, Q., Moser, J.-E. & Gratzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005).

    Article  CAS  Google Scholar 

  24. Adachi, M. et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006).

    Article  CAS  Google Scholar 

  25. Koo, H.-J. et al. Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg. Chim. Acta 361, 677–683 (2008).

    Article  CAS  Google Scholar 

  26. Lee, G.-W., Park, S. W., Kim, K., Ko, M. J. & Park, N.-G. Effects of electron donors in organic sensitizers on spectral response, electrochemical and photovoltaic properties. Renewable Energy abstr. P-PV-062 (2008).

Download references

Acknowledgements

This work was supported by the Korea Institute of Science and Technology (KIST) internal project and the Ministry of Information and Economy (MIK) new and renewable energy project under contract 2006-N-PV12-P-05. The authors also acknowledge financial support from the Pioneer Research Program of the Korea Science and Engineering Foundation (KOSEF) under contract No. 2008-05103.

Author information

Authors and Affiliations

Authors

Contributions

K.L. and N.-G.P. planned the project and data analysis. K.L. and S.W.P. carried out experimental work (K.L.: selective positioning of dye molecules; S.W.P.: P5 dye synthesis). M.J.K. and K.K. carried out impedance analysis.

Corresponding author

Correspondence to Nam-Gyu Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Park, S., Ko, M. et al. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Mater 8, 665–671 (2009). https://doi.org/10.1038/nmat2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing