Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An omnidirectional retroreflector based on the transmutation of dielectric singularities

Abstract

Transformation optics1,2,3,4,5,6 is a concept used in some metamaterials7,8,9,10,11 to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves12,13, surface plasmons14 and infrared light15,16. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute17 a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector18,19, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eaton lenses.
Figure 2: Simulation of Eaton lenses.
Figure 3: The device.
Figure 4: Effective electromagnetic properties.
Figure 5: Results.

Similar content being viewed by others

References

  1. Dolin, L. S. On the possibility of comparing three-dimensional electromagnetic systems with non-uniform anisotropic fillings. Isv. Vusov 4, 964–967 (1961).

    Google Scholar 

  2. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  CAS  Google Scholar 

  3. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  CAS  Google Scholar 

  4. Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247 (2006).

    Article  Google Scholar 

  5. Shalaev, V. M. Transforming light. Science 322, 384–386 (2008).

    Article  CAS  Google Scholar 

  6. Leonhardt, U. & Philbin, T. G. Transformation optics and the geometry of light. Preprint at <http://arxiv.org/abs/0805.4778> (2008).

  7. Milton, G. W. The Theory of Composites (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  8. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  CAS  Google Scholar 

  9. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  CAS  Google Scholar 

  10. Sarychev, A. K. & Shalaev, V. M. Electrodynamics of Metamaterials (World Scientific, 2007).

    Book  Google Scholar 

  11. Zhang, X. & Liu, Z. W. Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).

    Article  CAS  Google Scholar 

  12. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  13. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    Article  CAS  Google Scholar 

  14. Smolyaninov, I. I., Hung, Y. J. & Davis, C. C. Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. Opt. Lett. 33, 1342–1344 (2008).

    Article  CAS  Google Scholar 

  15. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    Article  CAS  Google Scholar 

  16. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Cloaking at optical frequencies. Nature Photon. 10.1038/nphoton.2009.117 (2009); preprint at <http://arxiv.org/abs/0904.3508> (2009).

  17. Tyc, T. & Leonhardt, U. Transmutation of singularities in optical instruments. New J. Phys. 10, 115038 (2008).

    Article  Google Scholar 

  18. Eaton, J. E. An Extension of the Luneburg–Type Lenses (Rep. No. 4110, Naval Res. Lab., 1953).

    Book  Google Scholar 

  19. Hannay, J. H. & Haeusser, T. M. Retroreflection by refraction. J. Mod. Opt. 40, 1437–1442 (1993).

    Article  Google Scholar 

  20. Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

    Google Scholar 

  21. Leonhardt, U. Notes on conformal invisibility devices. New J. Phys. 8, 118 (2006).

    Article  Google Scholar 

  22. Smith, D. R. & Pendry, J. B. Homogenization of metamaterials by field averaging. J. Opt. Soc. Am. B 23, 391–403 (2006).

    Article  CAS  Google Scholar 

  23. Zhao, L., Chen, X. & Ong, C. K. Visual observation and quantitative measurement of the microwave absorbing effect at X band. Rev. Sci. Instrum. 79, 124701 (2008).

    Article  CAS  Google Scholar 

  24. Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    Article  CAS  Google Scholar 

  25. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    Article  CAS  Google Scholar 

  26. Rill, M. S. et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Mater. 7, 543–546 (2008).

    Article  CAS  Google Scholar 

  27. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article  CAS  Google Scholar 

  28. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.G.M. and C.K.O. are supported by the Defense Science and Technology Agency under the Defense Innovative Research Program, Singapore (DSTA-NUS-DIRP/2004/02), T.T. acknowledges the grants MSM0021622409 and MSM0021622419 and U.L. is supported by a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Contributions

Y.G.M. and C.K.O. made contributions to the numerical simulations, device design, implementation and the experiment, T.T. and U.L. made contributions to the theory and U.L. suggested this project and wrote the paper.

Corresponding author

Correspondence to Ulf Leonhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Ong, C., Tyc, T. et al. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Mater 8, 639–642 (2009). https://doi.org/10.1038/nmat2489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing