Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity

Abstract

The development of anhydrous proton-conductive materials operating at temperatures above 80 C is a challenge that needs to be met for practical applications. Herein, we propose the new idea of encapsulation of a proton-carrier molecule—imidazole in this work—in aluminium porous coordination polymers for the creation of a hybridized proton conductor under anhydrous conditions. Tuning of the host–guest interaction can generate a good proton-conducting path at temperatures above 100 C. The dynamics of the adsorbed imidazole strongly affect the conductivity determined by 2H solid-state NMR. Isotope measurements of conductivity using imidazole-d4 showed that the proton-hopping mechanism was dominant for the conducting path. This work suggests that the combination of guest molecules and a variety of microporous frameworks would afford highly mobile proton carriers in solids and gives an idea for designing a new type of proton conductor, particularly for high-temperature and anhydrous conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imidazole molecules are densely packed with a low mobility that adversely affects the proton-transport process.
Figure 2: Aluminium porous frameworks serving as host frameworks for the preparation of proton-conductive materials.
Figure 3: Thermogravimetric curves for and over the temperature range from 25 to 400 C at a heating rate of 10 C min−1 under a N2 atmosphere.
Figure 4: Difference in flexibility of host frameworks 1 and 2 by imidazole inclusion.
Figure 5: Temperature dependencies of proton conductivity of 1 and 2 with imidazole molecules.
Figure 6: Adsorbed imidazoles in 1 have a higher mobility than that of 2 in the whole range of temperature.

Similar content being viewed by others

References

  1. Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    Article  CAS  Google Scholar 

  2. Schuster, M. F. H. & Meyer, W. H. Anhydrous proton-conducting polymers. Annu. Rev. Mater. Res. 33, 233–261 (2003).

    Article  CAS  Google Scholar 

  3. Jannasch, P. Recent developments in high-temperature proton conducting polymer electrolyte membranes. Curr. Opin. Colloid Interface Sci. 8, 96–102 (2003).

    Article  CAS  Google Scholar 

  4. Li, S. et al. Synthesis and properties of imidazole-grafted hybrid inorganic–organic polymer membranes. Electrochim. Acta 51, 1351–1358 (2006).

    Article  CAS  Google Scholar 

  5. West, A. R. Basic Solid State Chemistry (Wiley, 1999).

    Google Scholar 

  6. Kawada, A., McGhie, A. R. & Labes, M. M. Protonic conductivity in imidazole single crystal. J. Chem. Phys. 52, 3121–3125 (1970).

    Article  CAS  Google Scholar 

  7. Noro, S., Kitagawa, S., Kondo, M. & Seki, K. A new, methane adsorbent, porous coordination polymer. Angew. Chem. Int. Ed. 39, 2081–2084 (2000).

    Article  CAS  Google Scholar 

  8. Rowsell, J. L. & Yaghi, O. M. Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005).

    Article  CAS  Google Scholar 

  9. Ferey, G. et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2)(M=Al3+,Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003).

  10. Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  Google Scholar 

  11. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  12. Cychosz, K. A., Wong-Foy, A. G. & Matzger, A. J. Liquid phase adsorption by microporous coordination polymers: Removal of organosulfur compounds. J. Am. Chem. Soc. 130, 6938–6939 (2008).

    Article  CAS  Google Scholar 

  13. Finsy, V. et al. Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. J. Am. Chem. Soc. 130, 7110–7118 (2008).

    Article  CAS  Google Scholar 

  14. Bradshaw, D. et al. Permanent microporosity and enantioselective sorption in a chiral open framework. J. Am. Chem. Soc. 126, 6106–6114 (2004).

    Article  CAS  Google Scholar 

  15. Dybtsev, D. N. et al. Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 126, 32–33 (2004).

    Article  CAS  Google Scholar 

  16. Min, K. S. & Suh, M. P. Self-assembly and selective guest binding of three-dimensional open-framework solids from a macrocyclic complex as a trifunctional metal building block. Chem. Eur. J. 7, 303–313 (2001).

    Article  CAS  Google Scholar 

  17. Wang, B. et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    Article  CAS  Google Scholar 

  18. Hasegawa, S. et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis. J. Am. Chem. Soc. 129, 2607–2614 (2007).

    Article  CAS  Google Scholar 

  19. Horike, S., Dinca, M., Tamaki, K. & Long, J. R. Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 130, 5854–5855 (2008).

    Article  CAS  Google Scholar 

  20. Cho, S.-H. et al. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 24, 2563–2565 (2006).

    Article  Google Scholar 

  21. Horcajada, P. et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2820–2822 (2007).

  22. Schroder, F. et al. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 130, 6119–6130 (2008).

    Article  Google Scholar 

  23. Ingleson, M. J. et al. Generation of a solid Bronsted acid site in a chiral framework. Chem. Commun. 1287–1289 (2008).

  24. Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′−bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).

    Article  CAS  Google Scholar 

  25. Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  26. Evans, O. R., Ngo, H. L. & Lin, W. Chiral porous solids based on lamellar lanthanide phosphonates. J. Am. Chem. Soc. 123, 10395–10396 (2001).

    Article  CAS  Google Scholar 

  27. Ferey, G. et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46, 3259–3263 (2007).

    Article  CAS  Google Scholar 

  28. Kitagawa, H. et al. Highly proton-conductive copper coordination polymer, H2dtoaCu (H2dtoa=dithiooxamide anion). Inorg. Chem. Commun. 6, 346–348 (2003).

    Article  CAS  Google Scholar 

  29. Sadakiyo, M., Yamada, T. & Kitagawa, H. Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009).

    Article  CAS  Google Scholar 

  30. Uemura, T. et al. Radical polymerisation of styrene in porous coordination polymers. Chem. Commun. 5968–5970 (2005).

  31. Uemura, T. et al. Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace. J. Am. Chem. Soc. 130, 6781–6788 (2008).

    Article  CAS  Google Scholar 

  32. Mulfort, K. L. & Hupp, J. T. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).

    Article  CAS  Google Scholar 

  33. Muller, M. et al. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem. Mater. 20, 4576–4587 (2008).

    Article  Google Scholar 

  34. Turner, S. et al. Direct imaging of loaded metal-organic framework materials (Metal@MOF-5). Chem. Mater. 20, 5622–5627 (2008).

    Article  CAS  Google Scholar 

  35. Horcajada, P. et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  Google Scholar 

  36. Horcajada, P. et al. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    Article  CAS  Google Scholar 

  37. Tanaka, D. et al. Anthracene array-type porous coordination polymer with host–guest charge transfer interactions in excited states. Chem. Commun. 3142–3144 (2007).

  38. Comotti, A. et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. J. Am. Chem. Soc. 130, 13664–13672 (2008).

    Article  CAS  Google Scholar 

  39. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  40. Serre, C. et al. An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. 19, 2246–2251 (2007).

    Article  CAS  Google Scholar 

  41. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  42. Craven, B. M., McMullan, R. K., Bell, J. D. & Freeman, H. C. The crystal structure of imidazole by neutron diffraction at 20 C and −150 C. Acta Crystallogr. B 33, 2585–2589 (1977).

    Google Scholar 

  43. Horike, S. et al. Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions. Chem. Commun. 2152–2153 (2004).

  44. Ueda, T. et al. Phase transition and molecular motion of cyclohexane confined in metal-organic framework, IRMOF-1, as studied by 2H NMR. Chem. Phys. Lett. 443, 293–297 (2007).

    CAS  Google Scholar 

  45. Horike, S. et al. Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).

    Article  CAS  Google Scholar 

  46. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers (Academic, 1994).

    Google Scholar 

  47. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  48. Bozkurt, A. & Meyer, W. H. Proton conducting blends of poly(4-vinylimidazole) with phosphoricacid. Solid State Ion. 138, 259–265 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

S.B. and M.H. prepared the aluminium PCPs. S.B. and T.K. measured the ionic conductivity. S.B., N.Y. and D.T. carried out solid-state NMR work and their data analysis was carried out by S.B. and M.M. The work was directed by S.K., and S.B. and S.H. contributed in writing the manuscript.

Corresponding author

Correspondence to Susumu Kitagawa.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bureekaew, S., Horike, S., Higuchi, M. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Mater 8, 831–836 (2009). https://doi.org/10.1038/nmat2526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing