Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin Seebeck insulator

Abstract

Thermoelectric generation is an essential function in future energy-saving technologies1,2. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY2Fe5O12 can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect3,4,5,6,7,8,9,10,11,12. The experimental results require us to introduce a thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seebeck and spin Seebeck effects.
Figure 2: Measurements of thermal voltage generation.
Figure 3: Spatial distribution.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics 253–258 (Saunders College, 1976).

    Google Scholar 

  2. DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  3. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  4. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  5. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  6. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  7. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  8. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  9. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  10. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  11. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  CAS  Google Scholar 

  12. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  CAS  Google Scholar 

  13. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  14. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  15. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys 76, 323–410 (2004).

    Article  Google Scholar 

  16. Maekawa, S. (ed.) Concept in Spin Electronics (Oxford Univ. Press, 2006).

  17. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    Article  CAS  Google Scholar 

  18. Hatami, M., Bauer, G. E. W., Zhang, Q-F. & Kelly, P. J. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).

    Article  Google Scholar 

  19. Bauer, G. E. W., MacDonald, A. H. & Maekawa, S. (eds) Spin Caloritronics, Special Issue of Solid State Communications (Elsevier, 2010).

  20. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  21. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  22. Callen, H. B. The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys. Rev. 73, 1349–1358 (1948).

    Article  CAS  Google Scholar 

  23. Hansen, P., Witter, K. & Tolksdorf, W. Magnetic and magneto-optic properties of lead- and bismuth-substituted yttrium iron garnet films. Phys. Rev. B 27, 6608–6625 (1983).

    Article  CAS  Google Scholar 

  24. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  25. Foros, J., Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Magnetization noise in magnetoelectronic nanostructures. Phys. Rev. Lett. 95, 016601 (2005).

    Article  Google Scholar 

  26. Xiao, J., Bauer, G. E. W., Maekawa, S. & Brataas, A. Charge pumping and the colored thermal voltage noise in spin valves. Phys. Rev. B 79, 174415 (2009).

    Article  Google Scholar 

  27. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  28. Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: Linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001).

    Article  CAS  Google Scholar 

  29. Sanders, D. J. & Walton, D. Effect of magnon–phonon thermal relaxation on heat transport by magnons. Phys. Rev. B 15, 1489–1494 (1977).

    Article  CAS  Google Scholar 

  30. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. J. van Wees, K. Sato, Y. Suzuki, G. Tatara, W. Koshibae, K. M. Itoh, and M. Matoba for valuable discussions. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area ’Creation and control of spin current’ (19048009, 19048028), a Grant-in-Aid for Scientific Research A (21244058), the Global COE for the ’Materials Integration International Centre of Education and Research’ all from MEXT, Japan, a Grant for Industrial Technology Research from NEDO, Japan, Fundamental Research Grants from CREST-JST, PRESTO-JST, TRF, and TUIAREO, Japan, the Dutch FOM foundation, EC Contract IST-033749 ‘DynaMax’, and National Natural Science Foundation of China (10944004).

Author information

Authors and Affiliations

Authors

Contributions

K.U. designed the experiment, collected all of the data, and performed analysis of the data. E.S. planned and supervised the study. K.U., H.U. and H.K. fabricated the samples. T.O. and Y.K. supported the experiments. J.X., H.A., J.O., S.T., J.I., G.E.W.B. and S.M. developed the explanation of the experiment. K.U., J.X., H.A., G.E.W.B. and E.S. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. Saitoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, K., Xiao, J., Adachi, H. et al. Spin Seebeck insulator. Nature Mater 9, 894–897 (2010). https://doi.org/10.1038/nmat2856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing