Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using the dynamic bond to access macroscopically responsive structurally dynamic polymers

Abstract

New materials that have the ability to reversibly adapt to their environment and possess a wide range of responses ranging from self-healing to mechanical work are continually emerging. These adaptive systems have the potential to revolutionize technologies such as sensors and actuators, as well as numerous biomedical applications. We will describe the emergence of a new trend in the design of adaptive materials that involves the use of reversible chemistry (both non-covalent and covalent) to programme a response that originates at the most fundamental (molecular) level. Materials that make use of this approach — structurally dynamic polymers — produce macroscopic responses from a change in the material's molecular architecture (that is, the rearrangement or reorganization of the polymer components, or polymeric aggregates). This design approach requires careful selection of the reversible/dynamic bond used in the construction of the material to control its environmental responsiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic features of the dynamic bond.
Figure 2: Thermally responsive structurally dynamic polymers.
Figure 3: Supramolecular structurally dynamic re-healable materials.
Figure 4: Thermally responsive structurally dynamic materials.
Figure 5: Chemically responsive structurally dynamic materials.
Figure 6: Mechanically responsive structurally dynamic materials.
Figure 7: Photoresponsive molecularly dynamic materials.
Figure 8: Electro/redox-responsive molecularly dynamic materials.

Similar content being viewed by others

References

  1. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Google Scholar 

  2. Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    CAS  Google Scholar 

  3. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    CAS  Google Scholar 

  4. Maeda, T., Otsuka, H. & Takahara, A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci. 34, 581–604 (2009).

    CAS  Google Scholar 

  5. Ciferri, A. (ed.) Supramolecular Polymers 2nd edn (CRC Press, 2005).

    Google Scholar 

  6. Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 101, 4071–4098 (2001).

    CAS  Google Scholar 

  7. Fox, J. D. & Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 42, 6823–6835 (2009).

    CAS  Google Scholar 

  8. De Greef, T. F. A. et al. Supramolecular polymerizations. Chem. Rev. 109, 5687–5754 (2009).

    CAS  Google Scholar 

  9. Cohen Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    CAS  Google Scholar 

  10. Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE, 2001).

    Google Scholar 

  11. Liu, F. & Urban, M. W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3–23 (2010).

    CAS  Google Scholar 

  12. Vaia, R. & Baur, J. Adaptive composites. Science 319, 420–421 (2008).

    CAS  Google Scholar 

  13. Otto, S., Furlan, R. L. E. & Sanders, J. K. M. Dynamic combinatorial chemistry. Drug Discov. Today. 7, 117–125 (2002).

    CAS  Google Scholar 

  14. Ramström, O. & Lehn, J. M. Drug discovery by dynamic combinatorial libraries. Nature Rev. Drug Discov. 1, 26–36 (2002).

    Google Scholar 

  15. Sadownik, J. W. & Ulijn, R. V. Locking an oxidation-sensitive dynamic peptide system in the gel state. Chem. Commun. 3481–3483 (2010).

  16. Bergman, S. D. & Wudl, F. Mendable polymers. J. Mater. Chem. 18, 41–62 (2008).

    CAS  Google Scholar 

  17. Otsuka, H., Aotani, K., Higaki, Y., Amamoto, Y. & Takahara, A. Thermal reorganization and molecular weight control of dynamic covalent polymers containing alkoxyamines in their main chains. Macromolecules 40, 1429–1434 (2007).

    CAS  Google Scholar 

  18. Higaki, Y., Ostuka, H. & Takahara, A. A thermodynamic polymer cross-linking system based on radically exchangeable covalent bonds. Macromolecules 39, 2121–2125 (2006).

    CAS  Google Scholar 

  19. Amamoto, Y., Higaki, Y., Matsuda, Y., Otsuka, H. & Takahara, A. Programmed thermodynamic formation and structure analysis of star-like nanogels with core cross-linked by thermally exchangeable dynamic covalent bonds. J. Am. Chem. Soc. 129, 13298–13304 (2007).

    CAS  Google Scholar 

  20. Amamoto, Y. et al. Intelligent build-up of complementarily reactive diblock copolymers via dynamic covalent exchange toward symmetrical and miktoarm star-like nanogels. Macromolecules 43, 1785–1791 (2010).

    CAS  Google Scholar 

  21. Kloxin, C. J., Scott, T. F., Adzima, B. J. & Bowman, C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643–2653 (2010).

    CAS  Google Scholar 

  22. Amamoto, Y. et al. Reorganizable chemical polymer gels based on dynamic covalent exchange and controlled monomer insertion. Macromolecules 42, 8733–8738 (2009).

    CAS  Google Scholar 

  23. Sontjens, S. H. M., Sijbesma, R. P., vanGenderen, M. H. P. & Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc. 122, 7487–7493 (2000).

    Google Scholar 

  24. Folmer, B. J. B., Sijbesma, R. P., Versteegen, R. M., van der Rijt, J. A. J. & Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a relative hydrogen-bonding synthon. Adv. Mater. 12, 874–878 (2000).

    CAS  Google Scholar 

  25. Wu, D. Y., Meure, S. & Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008).

    CAS  Google Scholar 

  26. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    CAS  Google Scholar 

  27. Wool, R. P. Self-healing materials: a review. Soft Matter 4, 400–418 (2008).

    CAS  Google Scholar 

  28. van der Zwaag, S. Self Healing Materials: An Alternative Approach to 20 Centuries of Material Science (Springer, 2008).

    Google Scholar 

  29. Burattini, S., Greenland, B. W., Chappell, D., Colquhoun, H. M. & Hayes, W. Healable polymeric materials: a tutorial review. Chem. Soc. Rev. 39, 1973–1985 (2010).

    CAS  Google Scholar 

  30. Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. & White, S. R. Self-healing materials with microvascular networks. Nature Mater. 6, 581–585 (2007).

    CAS  Google Scholar 

  31. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    CAS  Google Scholar 

  32. Ghosh, B. & Urban, M. W. Self-reparing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    CAS  Google Scholar 

  33. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 51, 977–980 (2008).

    Google Scholar 

  34. Mynar, J. L. & Aida, T. Materials science: The gift of healing. Nature 451, 895–896 (2008).

    CAS  Google Scholar 

  35. Burattini, S., Colquhoun, H. M., Greenland, B. W. & Hayes, W. A novel self-healing supramolecular polymer system. Faraday Discuss. 143, 251–264 (2009).

    CAS  Google Scholar 

  36. Burattini, S. et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. Chem. Commun. 6717–6719 (2009).

  37. Burattini, S. et al. A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058 (2010).

    CAS  Google Scholar 

  38. Adzima, B. J., Aguirre, H. A., Kloxin, C. J., Scott, T. F. & Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 41, 9112–9117 (2008).

    CAS  Google Scholar 

  39. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms 5th edn (Springer, 2007).

    Google Scholar 

  40. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002).

    CAS  Google Scholar 

  41. Murphy, E. B. et al. Synthesis and characterization of a single-component thermally remendable polymer network; Staudinger and Stille revisited. Macromolecules 41, 5203–5209 (2008).

    CAS  Google Scholar 

  42. Reutenauer, P., Buhler, E., Boul, P. J., Candau, S. J. & Lehn, J. M. Room temperature dynamic polymers based on Diels-Alder chemistry. Chem. Eur. J. 15, 1893–1900 (2009).

    CAS  Google Scholar 

  43. Lendlein, A. & Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002).

    CAS  Google Scholar 

  44. Li, J., Viveros, J. A., Wrue, M. H. & Anthamatten, M. Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007).

    CAS  Google Scholar 

  45. Skene, W. G. & Lehn, J. M. Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl Acad. Sci. USA 101, 8270–8275 (2004).

    CAS  Google Scholar 

  46. Ono, T., Fujii, S., Nobori, T. & Lehn, J. M. Soft-to-hard transformation of the mechanical properties of dynamic covalent polymers through component incorporation. Chem. Commun. 46–48 (2007).

  47. Ono, T., Nobori, T. & Lehn, J. M. Dynamic polymer blends-component recombination between neat dynamic covalent polymers at room temperature. Chem. Commun. 1522–1524 (2005).

  48. Ono, T., Fujii, S., Nobori, T. & Lehn, J. M. Optodynamers: expression of color and fluorescence at the interface between two films of different dynamic polymers. Chem. Commun. 4360–4362 (2007).

  49. Beck, J. B. ; Ineman, J. M. & Rowan, S. J. Metal/ligand-induced formation of metallo-supramolecular polymers. Macromolecules 38, 5060–5068 (2005).

    CAS  Google Scholar 

  50. Kumpfer, J. R., Jin, J. & Rowan, S. J. Stimuli-responsive europium-containing metallo-supramolecular polymers. J. Mater. Chem. 20, 145–151 (2010).

    CAS  Google Scholar 

  51. Fratzl, P. Biomimetic materials research: what can we really learn from nature's structural materials? J. R. Soc. Interface 4, 637–642 (2007).

    CAS  Google Scholar 

  52. Sun, T., Feng, L., Gao, X. & Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644–652 (2005).

    CAS  Google Scholar 

  53. Vincent, J. F. V. Biomimetic materials. J. Mater. Res. 23, 3140–3147 (2008).

    CAS  Google Scholar 

  54. Trotter, J. A. et al. Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms. Biochem. Soc. Trans. 28, 357–362 (2000).

    CAS  Google Scholar 

  55. Trotter, J. A. & Koob, T. J. Collagen fibril aggregation-inhibitor from sea cucumber dermis. Matrix Biol. 18, 569–578 (1999).

    CAS  Google Scholar 

  56. Szulgit, G. K. & Shadwick, R. E. Dynamic mechanical characterizations of a mutable collagenous tissue: response of sea cucumber dermis to cell lysis and dermal extracts. J. Exp. Biol. 203, 1539–1550 (2000).

    CAS  Google Scholar 

  57. Alberts, B. et al. Molecular Biology of the Cell 3rd edn (Garland Science, 1994).

    Google Scholar 

  58. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008).

    CAS  Google Scholar 

  59. Shanmuganathan, K., Capadona, J. R., Rowan, S. J. & Weder, C. Stimuli-responsive mechanically adaptive polymer nanocomposites. ACS Appl. Mater. Interfaces 2, 165–174 (2010).

    CAS  Google Scholar 

  60. Shanmuganathan, K., Capadona, J. R., Rowan, S. J. & Weder, C. Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J. Mater. Chem. 20, 180–186 (2010).

    CAS  Google Scholar 

  61. Shanmuganathan, K., Capadona, J. R., Rowan, S. J. & Weder, C. Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 35, 212–222 (2010).

    CAS  Google Scholar 

  62. Osada, Y. & Gong, J. P. Soft and wet materials: Polymer gels. Adv. Mater. 10, 827–837 (1998).

    CAS  Google Scholar 

  63. Sangeetha, N. M. & Maitra, U. Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821–836 (2005).

    CAS  Google Scholar 

  64. Ashton, P. R. et al. Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. 34, 1865–1869 (1995).

    CAS  Google Scholar 

  65. Ge, Z., Hu, J., Huang, F. & Liu, S. Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew. Chem. Int. Ed. 48, 1798–1802 (2009).

    CAS  Google Scholar 

  66. Oku, T., Furusho, Y. & Takata, T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem. Int. Ed. 43, 966–969 (2004).

    CAS  Google Scholar 

  67. Endo, T., Suzuki, T., Sanda, F. & Takata, T. A novel approach for the chemical recycling of polymeric materials: The network polymer reversible-bifunctional monomer reversible system. Macromolecules 29, 3315–3316 (1996).

    CAS  Google Scholar 

  68. Deng, G., Tang, C., Li, F., Jiang, H. & Chen, Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43, 1191–1194 (2010).

    CAS  Google Scholar 

  69. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    CAS  Google Scholar 

  70. Tskhovrebova, L. & Trinick, J. Titin: properties and family relationships. Nature Rev. Mol. Cell Biol. 4, 679–689 (2003).

    CAS  Google Scholar 

  71. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    CAS  Google Scholar 

  72. Kushner, A. M., Vossler, J. D., Williams, G. A. & Guan, Z. A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131, 8766–8768 (2009).

    CAS  Google Scholar 

  73. Guan, Z. et al. Modular domain structure: a biomimetic strategy for advanced polymeric materials. J. Am. Chem. Soc. 126, 2058–2065 (2004).

    CAS  Google Scholar 

  74. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    CAS  Google Scholar 

  75. Potisek, S. L., Davis, D. A., Sottos, N. R., White, S. R. & Moore, J. S. Mechanophore-linked addition polymers. J. Am. Chem. Soc. 129, 13808–13809 (2007).

    CAS  Google Scholar 

  76. Löwe, C. & Weder, C. Oligo(p-phenylene vinylene) excimers as molecular probes: deformation-induced color changes in photoluminescent polymer blends. Adv. Mater. 14, 1625–1629 (2002).

    Google Scholar 

  77. Kunzelman, J., Crenshaw, B. R., Kinami, M. & Weder, C. Self-assembly and dispersion of chromogenic molecules: a versatile and general approach for self-assessing polymers. Macromol. Rapid Commun. 27, 1981–1987 (2006).

    CAS  Google Scholar 

  78. Sing, C. E., Kunzelman, J. & Weder, C. Time-temperature indicators for high temperature applications. J. Mater. Chem. 19, 104–110 (2009).

    CAS  Google Scholar 

  79. Lott, J. & Weder, C. Luminescent mechanochromic sensors based on poly(vinyldene fluoride) and excimer- forming p-phenylene vinylene dyes. Macromol. Chem. Phys. 211, 28–34 (2010).

    CAS  Google Scholar 

  80. Kinami, M., Crenshaw, B. R. & Weder, C. Polyesters with built-in threshold temperature and deformation sensors. Chem. Mater. 18, 946–955 (2006).

    CAS  Google Scholar 

  81. Tyson, D. A., Carbaugh, A. D., Ilhan, F., Santos-Pérez, J. & Meador, M. A. Novel anthracene diimide fluorescent sensor. Chem. Mater. 20, 6595–6596 (2008).

    CAS  Google Scholar 

  82. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    CAS  Google Scholar 

  83. Paulusse, J. M. J. & Sijbesma, R. P. Ultrasound in polymer chemistry: revival of an established technique. J. Polym. Sci. A 44, 5445–5453 (2006).

    CAS  Google Scholar 

  84. Basedow, A. M. & Ebert, K. H. Ultrasonic degradation of polymer in solution. Adv. Polym. Sci. 22, 83–148 (1977).

    CAS  Google Scholar 

  85. Paulusse, J. M. J. & Sijbesma, R. P. Reversible mechanochemistry of a PdII coordination polymer. Angew. Chem. Int. Ed. 43, 4460–4462 (2004).

    CAS  Google Scholar 

  86. Paulusse, J. M. J., Huijbers, J. P. J. & Sijbesma, R. P. Quantification of ultrasound-induced chain scission in PdII–phosphine coordination polymers. Chem. Eur. J. 12, 4928–4934 (2006).

    CAS  Google Scholar 

  87. Paulusse, J. M. J., van Beek, D. J. M. & Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. J. Am. Chem. Soc. 129, 2392–2397 (2007).

    CAS  Google Scholar 

  88. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nature Chem. 1, 133–137 (2009).

    CAS  Google Scholar 

  89. Caruso, M. M. et al. Mechanically induced chemical changes in polymers. Chem. Rev. 109, 5755–5798 (2009).

    CAS  Google Scholar 

  90. Berkowski, K. L., Potisek, S. L., Hickenboth, C. R. & Moore, J. S. Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38, 8975–8978 (2005).

    CAS  Google Scholar 

  91. Zhang, L. & Tam, J. P. Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers. J. Am. Chem. Soc. 119, 2363–2370 (1997).

    CAS  Google Scholar 

  92. Caraballo, R., Rahm, M., Vongvilai, P., Brinck, T. & Ramström, O. Phosphine-catalyzed disulfide metathesis. Chem. Commun. 6603–6605 (2008).

  93. Arisawa, M. & Yamaguchi, M. Rhodium-catalyzed disulfide exchange reaction. J. Am. Chem. Soc. 125, 6624–6625 (2003).

    CAS  Google Scholar 

  94. Otsuka, H., Nagano, S., Kobashi, Y., Maeda, T. & Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun. 1150–1152 (2010).

  95. Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004).

    CAS  Google Scholar 

  96. Zheng, Y. et al. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002).

    CAS  Google Scholar 

  97. Chujo, Y., Sada, K., Nomura, R., Naka, A. & Saegusa, T. Photogelation and redox properties of anthracene-disulfide-modified polyoxazolines. Macromolecules 26, 5611–5614 (1993).

    CAS  Google Scholar 

  98. Chujo, Y., Sada, K. & Saegusa, T. Polyoxazoline having a coumarin moiety as a pendant group: synthesis and photogelation. Macromolecules 23, 2693–2697 (1990).

    CAS  Google Scholar 

  99. Chen, Y. & Geh, J. L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 1. Copolymerizibility and photocrosslinking behaviours. Polymer 20, 4473–4480 (1996).

    Google Scholar 

  100. Connal, L. A., Vestberg, R., Hawker, C. J. & Qiao, G. G. Fabrication of reversibly crosslinkable, 3-dimensionally conformal polymeric microstructures. Adv. Funct. Mater. 18, 3315–3322 (2008).

    CAS  Google Scholar 

  101. Scott, T. F., Schneider, A. D., Cook, W. D. & Bowman, C. N. Photoinduced plasticity in cross-linked polymers. Science 308, 1615–1617 (2005).

    CAS  Google Scholar 

  102. Long, K. N., Scott, T. F., Qi, H. J., Bowman, C. N. & Dunn, M. L. Photomechanics of light-activated polymers. J. Mech. Phys. Solids 57, 1103–1121 (2009).

    CAS  Google Scholar 

  103. Guo, D. S., Chen, S., Qian, H., Zhang, H. Q. & Liu, Y. Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chem. Commun. 2620–2622 (2010).

  104. Chujo, Y., Sada, K., Naka, A., Nomura, R. & Saegusa, T. Synthesis and redox gelation of disulfide-modified polyoxazoline. Macromolecules 26, 883–887 (1993).

    CAS  Google Scholar 

  105. Vogt, A. P. & Sumerlin, B. S. Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 5, 2347–2351 (2009).

    CAS  Google Scholar 

  106. Kolomiets, E. & Lehn, J.-M. Double dynamers: molecular and supramolecular double dynamic polymers. Chem. Commun. 1519–1521 (2005).

  107. ten Cate, A. T., Dankers, P. Y. W., Sijbesma, R. P. & Meijer, E. W. Disulfide exchange in hydrogen-bonded cyclic assemblies: Stereochemical self-selection by double dynamic chemistry. J. Org. Chem. 70, 5799–5803 (2005).

    CAS  Google Scholar 

  108. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    CAS  Google Scholar 

  109. Wang, C. et al. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel-sol transition by redox reactions and light irradiation. J. Am. Chem. Soc. 132, 3092–3096 (2010).

    CAS  Google Scholar 

  110. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    CAS  Google Scholar 

  111. Ludlow, R. F. & Otto, S. Systems chemistry. Chem. Soc. Rev. 37, 101–108 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation (DMR-0602869, CHE-0704026, and CBET-0828155), the US Army Research Office (DAAD19-03-1-0208 and W911NF-06-1-0414) for funding research in this area. M.A.M. acknowledges support from the Subsonics Fixed Wing Project on the Fundamental Aeronautics Program. R.J.W. acknowledges support through the NASA Graduate Student Research Program (NNX08AY62H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Rowan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojtecki, R., Meador, M. & Rowan, S. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater 10, 14–27 (2011). https://doi.org/10.1038/nmat2891

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing