Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)

This article has been updated

Abstract

Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 °C, the best commercially available inorganic semiconductors are bismuth telluride (Bi2Te3)-based alloys, which possess a figure of merit ZT close to one1. Most of the recently discovered thermoelectric materials with ZT>2 exhibit one common property, namely their low lattice thermal conductivities2,3. Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (λ=0.37 W m−1 K−1) yields a ZT=0.25 at room temperature that approaches the values required for efficient devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure and photoelectron spectroscopy fingerprint.
Figure 2: Thermoelectric properties versus oxidation level.
Figure 3: Thermal conductivity and thermoelectric figure of merit.
Figure 4: Manufacturing and power generation of the organic thermoelectric module.

Similar content being viewed by others

Change history

  • 09 May 2011

    In the version of this Letter originally published online, the y-axis values in Fig. 2c were incorrect by 10-2. Hence in the discussion of this figure in the text, the maximum power output after 10 min TDAE exposure for a load resistance of 39 Ω should have read 1.13 nW. Both these errors have now been corrected in the HTML and PDF versions.

References

  1. Goldsmid, H. J. Recent Trends in Thermoelectric Materials, Semiconductors and Semimetals Vol. 69, Ch.1 (Academic, 2000).

    Google Scholar 

  2. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  3. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  4. Yan, H., Sada, N. & Toshima, N. Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials. J. Therm. Anal. Calorim. 69, 881–887 (2002).

    Article  CAS  Google Scholar 

  5. Feng-Xing, J. et al. Thermoelectric performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate). Chin. Phys. Lett. 6, 2202–2205 (2008).

    Google Scholar 

  6. Moses, D. & Denenstein, A. Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene. Phys. Rev. B 30, 2090–2097 (1884).

    Article  Google Scholar 

  7. Cahill, D. G. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35, 4067–4073 (1987).

    Article  CAS  Google Scholar 

  8. Jun, L., Zhang, L-M., He, L. & Tang, X-F. Synthesis and thermoelectric properties of polyaniline. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 18, 53–55 (2008).

    Google Scholar 

  9. Kemp, N. T. et al. Thermoelectric power and conductivity of different types of polypyrrole. J. Polym. Sci. B 37, 953–960 (1999).

    Article  CAS  Google Scholar 

  10. Aïch, R. B., Blouin, N., Bouchard, A. & Leclerc, M. Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem. Mater. 21, 751–757 (2009).

    Article  Google Scholar 

  11. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000).

    Article  CAS  Google Scholar 

  12. Crispin, X. et al. Conductivity, morphology, interfacial chemistry and stability of poly(3,4-ethylene dioxythiophene)—poly(styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. B 41, 2561–2583 (2003).

    Article  CAS  Google Scholar 

  13. Winther-Jensen, B. & West, K. Vapor-phase polymerization of 3,4-ethylenedioxythiophene: A route to highly conducting polymer surface layers. Macromolecules 37, 4538–4543 (2004).

    Article  CAS  Google Scholar 

  14. Aasmundtveit, K. E. et al. Structure of thin films of poly(3,4-ethylenedioxythiophene). Synth. Met. 101, 561–564 (1999).

    Article  CAS  Google Scholar 

  15. Lindell, L. et al. Transparent plastic low-workfunction poly(3,4-ethylenedioxythiophene) electrodes. Chem. Mater. 18, 4246–4252 (2006).

    Article  CAS  Google Scholar 

  16. Winther-Jensen, B., Winther-Jensen, O., Forsyth, M. & MacFarlane, D. R. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321, 671–674 (2008).

    Article  CAS  Google Scholar 

  17. Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. J. Appl. Phys. 105, 054303 (2009).

    Article  Google Scholar 

  18. Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G. & Braun, P. V. Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

    Article  Google Scholar 

  19. Borca-Tasciuc, T., Kumar, A. R. & Chen, G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72, 2139–2147 (2001).

    Article  CAS  Google Scholar 

  20. Chaikin, P. M., Kwak, J. F., Jones, T. E., Garito, A. F. & Heeger, A. J. Thermoelectric power of tetrathiofulvalinium tetracyanoquinodimethane. Phys. Rev. Lett. 31, 601–604 (1973).

    Article  CAS  Google Scholar 

  21. Böttner, H., Nurnus, J. & Schubert, A. Thermoelectrics Handbook: Macro to Nano Ch. 46-13 (CRC, 2006).

    Google Scholar 

  22. Wusten, J. & Potje-Kamloth, K. Organic thermogenerators for energy autarkic systems on flexible substrates. J. Phys. D 41, 135113 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Swedish Energy Agency, the Swedish Government (Advanced Functional Materials) and the Knut and Alice Wallenberg Foundation for financial funding for this project. M.F. and S.B. thank the Swedish Research Council for financial support. M.B. wishes to thank the Önnesjö Foundation for financial support. We also want to thank D. Emin and D. Cahill for fruitful scientific discussions and B. Sklepkovych for comments regarding an earlier draft.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and A.M. initiated the study. O.B. performed the conductivity and thermopower measurements and fabricated the thermogenerators. Z.U.K. developed the 3ω -technique to measure the thermal conductivity. S.B. and M.F. performed the photoelectron spectroscopy measurements. O.B., Z.U.K. and X.C. prepared the manuscript. X.C. and M.B. coordinated the project. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Xavier Crispin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubnova, O., Khan, Z., Malti, A. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Mater 10, 429–433 (2011). https://doi.org/10.1038/nmat3012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing