Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction

Abstract

Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co3O4 nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co3O4/graphene hybrid materials.
Figure 2: Co3O4/graphene hybrid as oxygen reduction catalysts.
Figure 3: Assessment of peroxide percentage in ORR catalysed by hybrid catalysts.
Figure 4: ORR performance and stability of catalysts.
Figure 5: Co3O4/graphene hybrid bi-functional catalyst for ORR and water oxidation (OER).

Similar content being viewed by others

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Bard, A. J. & Fox, M. A. Artificial photosynthesis—solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  3. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    Article  CAS  Google Scholar 

  4. Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).

    Article  CAS  Google Scholar 

  5. Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

    Article  CAS  Google Scholar 

  6. Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Article  CAS  Google Scholar 

  7. Bezerra, C. W. B. et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008).

    Article  CAS  Google Scholar 

  8. Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    Article  CAS  Google Scholar 

  9. Liu, R., Wu, D., Feng, X. & Muellen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Edn. 49, 2565–2569 (2010).

    Article  CAS  Google Scholar 

  10. Qu, L., Liu, Y., Baek, J-B. & Dai, L. Nitrogen-doped graphene as eficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    Article  CAS  Google Scholar 

  11. Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

    Article  CAS  Google Scholar 

  12. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  13. Trasatti, S. Electrodes of Conductive Metal Oxides (Elsevier, 1980).

    Google Scholar 

  14. Chen, G., Bare, S. R. & Mallouk, T. E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149, A1092–A1099 (2002).

    Article  CAS  Google Scholar 

  15. Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

    Article  CAS  Google Scholar 

  16. Wang, H., Robinson, J. T., Diankov, G. & Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 132, 3270–3271 (2010).

    Article  CAS  Google Scholar 

  17. Wang, H. L., Casalongue, H. S., Liang, Y. Y. & Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010).

    Article  CAS  Google Scholar 

  18. Liang, Y. Y., Wang, H. L., Casalongue, H. S., Chen, Z. & Dai, H. J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3, 701–705 (2010).

    Article  CAS  Google Scholar 

  19. Li, Y. et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. Advanced asymmetrical supercapacitors based on graphene hybrid materials Nano Res.http://dx.doi.org/10.1007/s12274-011-0128-7 (2011).

  21. Wang, H. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010).

    Article  CAS  Google Scholar 

  22. Nethravathi, C. & Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46, 1994–1998 (2008).

    Article  CAS  Google Scholar 

  23. Dong, Y., He, K., Yin, L. & Zhang, A. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 18, 435602 (2007).

    Article  Google Scholar 

  24. Cotton, F. A., Wikinson, G. & Murillo, C. A. Advanced Inorganic Chemistry (Wiley, 1999).

    Google Scholar 

  25. Long, D. et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26, 16096–16102 (2010).

    Article  CAS  Google Scholar 

  26. Mayrhofer, K. J. J. et al. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181–3188 (2008).

    Article  CAS  Google Scholar 

  27. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Aplications (Wiley, 2001).

    Google Scholar 

  28. Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

    Article  CAS  Google Scholar 

  29. Bidault, F., Brett, D. J. L., Middleton, P. H. & Brandon, N. P. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 187, 39–48 (2009).

    Article  CAS  Google Scholar 

  30. Mehta, V. & Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003).

    Article  CAS  Google Scholar 

  31. Escribano, S., Blachot, J-F., Etheve, J., Morin, A. & Mosdale, R. Characterization of PEMFCs gas diffusion layers properties. J. Power Sources 156, 8–13 (2006).

    Article  CAS  Google Scholar 

  32. Piana, M., Catanorchi, S. & Gasteiger, H. A. Kinetics of non-platinum group metal catalysts for the oxygen reduction reaction in alkaline medium. Electrochem. Soc. Trans. 16, 2045–2055 (2008).

    CAS  Google Scholar 

  33. Meng, H., Jaouen, F., Proietti, E., Lefevre, M. & Dodelet, J. P. pH-effect on oxygen reduction activity of Fe-based electro-catalysts. Electrochem. Commun. 11, 1986–1989 (2009).

    Article  CAS  Google Scholar 

  34. Jin, W., Du, H., Zheng, S. L., Xu, H. B. & Zhang, Y. Comparison of the oxygen reduction reaction between NaOH and KOH solutions on a Pt electrode: The electrolyte-dependent effect. J. Phys. Chem. B 114, 6542–6548 (2010).

    Article  CAS  Google Scholar 

  35. Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654–2675 (2007).

    Article  CAS  Google Scholar 

  36. Zhang, L-S., Liang, X-Q., Song, W-G. & Wu, Z-Y. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys. Chem. Chem. Phys. 12, 12055–12059 (2010).

    Article  CAS  Google Scholar 

  37. Zhou, J. G. et al. Immobilization of RuO2 on carbon nanotube: An x-ray absorption near-edge structure study. J. Phys. Chem. C 113, 10747–10750 (2009).

    Article  CAS  Google Scholar 

  38. Rojas, T. C. et al. Preparation, characterization and thermal evolution of oxygen passivated nanocrystalline cobalt. J. Mater. Chem. 9, 1011–1017 (1999).

    Article  CAS  Google Scholar 

  39. Zhou, J. G. et al. Electronic structure of TiO2 nanotube arrays from X-ray absorption near edge structure studies. J. Mater. Chem. 19, 6804–6809 (2009).

    Article  CAS  Google Scholar 

  40. De Koninck, M. & Marsan, B. MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim. Acta 53, 7012–7021 (2008).

    Article  CAS  Google Scholar 

  41. Olson, T. S. et al. Anion-exchange membrane fuel cells: Dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C 114, 5049–5059 (2010).

    Article  CAS  Google Scholar 

  42. Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T. & Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.F. Jaramillo for insightful discussions. This work was supported in part by ONR. CLS is supported by the NSERC, NRC, CIHR of Canada, and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Contributions

Y. Liang, Y. Li, H.W. and H.D. conceived the project and designed the experiments. Y. Liang, Y. Li and H.W. performed the experiments. J.Z., J.W. and T.R. performed the XANES measurement and analysis. Y. Liang, Y. Li, H.L. and H.D. analysed the data. Y. Liang, Y. Li and H.D. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1878 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Li, Y., Wang, H. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Mater 10, 780–786 (2011). https://doi.org/10.1038/nmat3087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing