Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colloidal nanoplatelets with two-dimensional electronic structure

Abstract

The syntheses of strongly anisotropic nanocrystals with one dimension much smaller than the two others, such as nanoplatelets, are still greatly underdeveloped. Here, we demonstrate the formation of atomically flat quasi-two-dimensional colloidal CdSe, CdS and CdTe nanoplatelets with well-defined thicknesses ranging from 4 to 11 monolayers. These nanoplatelets have the electronic properties of two-dimensional quantum wells formed by molecular beam epitaxy, and their thickness-dependent absorption and emissionspectra are described very well within an eight-band Pidgeon–Brown model. They present an extremely narrow emission spectrum with full-width at half-maximum less than 40 meV at room temperature. The radiative fluorescent lifetime measured in CdSe nanoplatelets decreases with temperature, reaching 1 ns at 6 K, two orders of magnitude less than for spherical CdSe nanoparticles. This makes the nanoplatelets the fastest colloidal fluorescent emitters and strongly suggests that they show a giant oscillator strength transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of nanoplatelets.
Figure 2: Emission and absorption spectra of II–VI compound nanoplatelets.
Figure 3: The model and the experimental data.
Figure 4: Lifetime and fluorescent emission intensity of 7-ML-thick CdSe NPLs versus temperature.

Similar content being viewed by others

References

  1. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  2. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  3. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  4. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  5. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  6. Mahler, B., Lequeux, N. & Dubertret, B. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals. J. Am. Chem. Soc. 132, 953–959 (2010).

    Article  CAS  Google Scholar 

  7. Muljarov, E. A., Zhukov, E. A., Dneprovskii, V. S. & Masumoto, Y. Dielectrically enhanced excitons in semiconductor–insulator quantum wires: Theory and experiment. Phys. Rev. B 62, 7420–7432 (2000).

    Article  CAS  Google Scholar 

  8. Mulyarov, E. A. & Tikhodeev, S. G. Dielectric enhancement of excitons in semiconducting quantum wires. J. Exp. Theor. Phys. 84, 151–155 (1997).

    Article  Google Scholar 

  9. Shabaev, A. & Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 4, 1821–1825 (2004).

    Article  CAS  Google Scholar 

  10. Bartnik, A. C., Efros, A. L., Koh, W. K., Murray, C. B. & Wise, F. W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 82, 195313 (2010).

    Article  Google Scholar 

  11. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. J. Exp Theor. Phys. Lett. 29, 658–661 (1979).

    Google Scholar 

  12. Gippius, N. A. et al. Excitons in near-surface quantum wells in magnetic fields: Experiment and theory. J. Appl. Phys. 83, 5410–5417 (1998).

    Article  CAS  Google Scholar 

  13. Tikhodeev, S. G. et al. Excitons in near surface quantum wells: Local probe of semiconductor/vacuum surface. Phys. Status Solidi 164, 179–182 (1997).

    Article  CAS  Google Scholar 

  14. Kulik, L. V. et al. Dielectric enhancement of excitons in near-surface quantum wells. Phys. Rev. B 54, R2335–R2338 (1996).

    Article  CAS  Google Scholar 

  15. Jackson, J. D. Classical Electrodynamics 3rd edn (Wiley, 1998).

    Google Scholar 

  16. Rashba, E. I. & Gurgenishvili, G. E. Edge absorption theory in semiconductors. Sov. Phys. Solid State 4, 759–760 (1962).

    Google Scholar 

  17. Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum-wells. Phys. Rev. Lett. 59, 2337–2340 (1987).

    Article  CAS  Google Scholar 

  18. Kan, C. X. et al. Gold microplates with well-defined shapes. Small 6, 1768–1775 (2010).

    Article  CAS  Google Scholar 

  19. Puntes, V. F., Zanchet, D., Erdonmez, C. K. & Alivisatos, A. P. Synthesis of hcp-Co nanodisks. J. Am. Chem. Soc. 124, 12874–12880 (2002).

    Article  CAS  Google Scholar 

  20. Huo, Z. Y. et al. Self-organized ultrathin oxide nanocrystals. Nano Lett. 9, 1260–1264 (2009).

    Article  CAS  Google Scholar 

  21. Yu, T., Lim, B. & Xia, Y. N. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem. Int. Ed. 49, 4484–4487 (2010).

    Article  CAS  Google Scholar 

  22. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  23. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    Article  CAS  Google Scholar 

  24. Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48, 6861–6864 (2009).

    Article  CAS  Google Scholar 

  25. Liu, Y. H., Wayman, V. L., Gibbons, P. C., Loomis, R. A. & Buhro, W. E. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Lett. 10, 352–357 (2010).

    Article  CAS  Google Scholar 

  26. Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    Article  CAS  Google Scholar 

  27. Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    Article  CAS  Google Scholar 

  28. Ouyang, J. et al. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 112, 13805–13811 (2008).

    Article  CAS  Google Scholar 

  29. Li, Z. & Peng, X. G. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects. J. Am. Chem. Soc. 133, 6578–6586 (2011).

    Article  CAS  Google Scholar 

  30. Pidgeon, C. R. & Brown, R. N. Interband magneto-absorption and Faraday rotation in InSb. Phys. Rev. 146, 575–583 (1966).

    Article  CAS  Google Scholar 

  31. Kohn, W. & Luttinger, J. M. Quantum theory of electrical transport phenomena. Phys. Rev. 108, 590–611 (1957).

    Article  CAS  Google Scholar 

  32. Nirmal, M., Murray, C. B. & Bawendi, M. G. Fluorescence-line narrowing in Cdse quantum dots—surface localization of the photogenerated exciton. Phys. Rev. B 50, 2293–2300 (1994).

    Article  CAS  Google Scholar 

  33. Donega, C. D., Bode, M. & Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 74, 085320 (2006).

    Article  Google Scholar 

  34. Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    Article  CAS  Google Scholar 

  35. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem.—US 100, 468–471 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.D. acknowledges funding from the Agence Nationale pour la Recherche, the city of Paris, and the Région Ile-de-France. B.D. is grateful for discussions with P. Senellart. We thank N. Lequeux for help with the powder X-ray diffraction measurements and X. Xu for advice with TEM measurements. Al.L.E acknowledges the financial support of the Office of Naval Research and of the Saint-Gobain-ESPCI programme.

Author information

Authors and Affiliations

Authors

Contributions

S.I. led the work related to the NPL synthesis and characterization, and initiated the low-temperature measurements. M.D.T. carried out the experiments at low temperature. R.P.S.M.L. helped with the low-temperature measurements and set-up. B.M. carried out the CdTe NPL synthesis. B.D. guided the work. Al.L.E. provided the theoretical description of the NPLs. B.D. and Al.L.E. wrote the manuscript.

Corresponding authors

Correspondence to B. Dubertret or Al. L. Efros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ithurria, S., Tessier, M., Mahler, B. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater 10, 936–941 (2011). https://doi.org/10.1038/nmat3145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing