Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts

Abstract

Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water–alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH–M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH–M2+δ energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of M2+δOδ(OH)2−δ/Pt(111) systems using XANES, CV and STM measurements.
Figure 2: Trend in overpotential for CO oxidation is shown as a function of the 3d transition elements.
Figure 3: Trend in overpotential for the oxygen evolution reaction (OER) is shown as a function of the 3d transition elements.
Figure 4: Trend in overpotential for the hydrogen evolution reaction (HER) is shown as a function of the 3d transition elements.

Similar content being viewed by others

References

  1. Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    Article  CAS  Google Scholar 

  2. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  3. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  4. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  5. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  6. Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Article  Google Scholar 

  7. Gasteiger, H. A. & Markovi, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  8. Lasia, A. in Handbook of Fuel Cells: Fundamentals, Technology and Applications Vol. 2 (eds Vieistich, W., Lamm, A. & Gasteiger, H. A.) 416 (Wiley, 2003).

    Google Scholar 

  9. Moorhouse, J. (ed.) Modern Chlor-Alkali Technology (Wiley, 2001).

  10. Hoare, J. P. The Electrochemistry of Oxygen (Interscience, 1968).

    Google Scholar 

  11. Kinoshita, K. & Society, E. Electrochemical Oxygen Technology (Wiley, 1992).

    Google Scholar 

  12. Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel—molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004).

    Article  CAS  Google Scholar 

  13. Lasia, A. & Rami, A. Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. Interfacial Electrochem. 294, 123–141 (1990).

    Article  CAS  Google Scholar 

  14. Birss, V. I. & Damjanovic, A. Oxygen evolution at platinum electrodes in alkaline solutions. J. Electrochem. Soc. 134, 113–117 (1987).

    Article  CAS  Google Scholar 

  15. Ardizzone, S., Fregonara, G. & Trasatti, S. ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990).

    Article  CAS  Google Scholar 

  16. Lyons, M. E. G. & Burke, L. D. Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions. J. Chem. Soc. Faraday Trans. 1 83, 299–321 (1987).

    Article  CAS  Google Scholar 

  17. Trasatti, S. Electrodes of Conductive Metallic Oxides (Elsevier, 1980).

    Google Scholar 

  18. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  19. Sergio, T. Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 (1991).

    Article  Google Scholar 

  20. Lyons, M. E. G. & Brandon, M. P. A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119–130 (2010).

    Article  CAS  Google Scholar 

  21. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  22. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  23. Bockris, J. O. M. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    Article  CAS  Google Scholar 

  24. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  25. Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4636 (2004).

    Article  CAS  Google Scholar 

  26. Totir, D., Mo, Y., Kim, S., Antonio, M. R. & Scherson, D. A. In situ Co K-edge X-ray absorption fine structure of cobalt hydroxide film electrodes in alkaline solutions. J. Electrochem. Soc. 147, 4594–4597 (2000).

    Article  CAS  Google Scholar 

  27. Pourbaix, M. in Atlas of Electrochemical Equilibria in Aqueous Solutions (ed. Pourbaix, M.) 644 (NACE, 1974).

    Google Scholar 

  28. Campbell, C. T. Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990).

    Article  CAS  Google Scholar 

  29. Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. Interfacial Electrochem. 107, 205–209 (1979).

    Article  Google Scholar 

  30. Markovi, N. M. & Ross, P. N. Jr Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  31. Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Article  CAS  Google Scholar 

  32. Ahmed, M. et al. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes. J. Phys. Chem. C 115, 17020–17027 (2011).

    Article  CAS  Google Scholar 

  33. Van der Niet, M. J. T. C., den Dunnen, A., Juurlink, L. B. F. & Koper, M. T. M. Co-adsorption of O and H2O on nanostructured platinum surfaces: Does OH form at steps? Angew. Chem. Int. Ed. 122, 6572–6575 (2010).

    Article  Google Scholar 

  34. Marković, N. M. et al. Effect of temperature on surface processes at the Pt(111)-liquid interface:? Hydrogen adsorption, oxide formation, and CO oxidation? J. Phys. Chem. B 103, 8568–8577 (1999).

    Article  Google Scholar 

  35. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

    Article  CAS  Google Scholar 

  36. Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: Part 1: CO oxidation. J. Phys. Chem. B 105, 12082–12086 (2001).

    Article  CAS  Google Scholar 

  37. Markovic, N. R. & Ross, P. N. New electrocatalysts for fuel cells from model surfaces to commercial catalysts. Cattech 4, 110–126 (2000).

    Article  CAS  Google Scholar 

  38. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  39. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  40. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    Article  CAS  Google Scholar 

  41. Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    Article  CAS  Google Scholar 

  42. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  43. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+/Ni(OH)2/Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  Google Scholar 

  44. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1994).

    Google Scholar 

  45. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  CAS  Google Scholar 

  46. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  47. Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    Article  CAS  Google Scholar 

  48. Kim, M-S. & Kim, K-B. A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance. J. Electrochem. Soc. 145, 507–511 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under contract DE-AC02-06CH11357. R.S. would like to acknowledge the Argonne National Laboratory post-doctoral fellowship for his funding.

Author information

Authors and Affiliations

Authors

Contributions

R.S. and N.M.M. developed the idea and designed the experiments. R.S., D.T., K.C.C. and A.P.P. performed the experiments and data analyses. R.S., N.M.M., D.S., K.C.C., J.G. and V.S. discussed the results. R.S. and N.M.M. co-wrote the paper.

Corresponding author

Correspondence to Nenad M. Markovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subbaraman, R., Tripkovic, D., Chang, KC. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Mater 11, 550–557 (2012). https://doi.org/10.1038/nmat3313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing