Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures

Abstract

The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate intensityn, with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometric and optical characteristics of plasmonic photocatalyst.
Figure 2: Reaction rate, quantum efficiency and KIE as a function of intensity and temperature.
Figure 3: Molecular model for electron-driven reactions on metals.
Figure 4: Unique features of plasmonic photocatalysts.

Similar content being viewed by others

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. Linsebiger, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  Google Scholar 

  3. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  Google Scholar 

  4. Asahi, R., Morikawa, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  Google Scholar 

  5. Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    Article  CAS  Google Scholar 

  6. Christopher, P., Ingram, D. B. & Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. J. Phys. Chem. C 114, 9173–9177 (2010).

    Article  CAS  Google Scholar 

  7. Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-meta/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    Article  CAS  Google Scholar 

  8. Mallouk, T. E. The emerging technology of solar fuels. J. Phys. Chem. Lett. 1, 2738–2739 (2010).

    Article  CAS  Google Scholar 

  9. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  CAS  Google Scholar 

  10. Christopher, P., Xin, H. & Linic, S. Visible light enhanced catalytic oxidation reactions on plasmonic Ag nanostructures. Nature Chem. 3, 467–472 (2011).

    Article  CAS  Google Scholar 

  11. Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338–1341 (1996).

    Article  CAS  Google Scholar 

  12. Thompson, T. L. & Yates, J. T. Jr Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. J. Phys. Chem B 109, 18230–18236 (2010).

    Article  Google Scholar 

  13. Westrich, T. A., Dahlberg, K. A., Kaviany, M. & Schwank, J. W. High-temperature photocatalytic ethylene oxidation over TiO2 . J. Phys. Chem. C 115, 16537–16543 (2011).

    Article  CAS  Google Scholar 

  14. Linic, S. & Barteau, M. A. Control of ethylene epoxidation selectivity by surface oxametallacycles. J. Am. Chem. Soc. 125, 4034–4035 (2003).

    Article  CAS  Google Scholar 

  15. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008).

    Article  CAS  Google Scholar 

  16. El-Sayed, M. A. Some Interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    Article  CAS  Google Scholar 

  17. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  18. Gunnarsson, L. et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions. J. Phys. Chem. B 109, 1079–1087 (2005).

    Article  CAS  Google Scholar 

  19. Kamat, P. V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002).

    Article  CAS  Google Scholar 

  20. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  Google Scholar 

  21. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  22. Kühn, S., Håkanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

    Article  Google Scholar 

  23. Moskovitz, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    Article  Google Scholar 

  24. Monnier, J. R., Medlin, J. W. & Barteau, M. A. Use of oxygen-18 to determine kinetics of butadiene epoxidation over Cs-promoted, Ag catalysts. J. Catal. 203, 362–368 (2001).

    Article  CAS  Google Scholar 

  25. Bonn, M. et al. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  26. Hatch, S. R., Zhu, X-Y., White, J. M. & Campion, A. Photoinduced pathways to dissociation and desorption of dioxygen on Ag(110) and Pt(111). J. Phys. Chem. 95, 1759–1768 (1991).

    Article  CAS  Google Scholar 

  27. So, S. K., Franchy, R. & Ho, W. Photodesorption of NO from Ag(111) and Cu(111). J. Chem. Phys. 95, 1385–1399 (1991).

    Article  CAS  Google Scholar 

  28. Dai, H-L. & Ho, W. Laser Spectroscopy and Photochemistry on Metal Surfaces (World Scientific, 1995).

    Book  Google Scholar 

  29. Gadzuk, J. W. Hot-electron femtochemistry at surfaces: On the role of multiple electron processes in desorption. Chem. Phys. 251, 87–97 (2000).

    Article  CAS  Google Scholar 

  30. Mulugeta, D., Kim, K. H., Watanabe, K., Menzel, D. & Freund, H-J. Size effects in thermal and photochemistry of (NO)2 on Ag nanoparticles. Phys. Rev. Lett. 101, 146103 (2008).

    Article  Google Scholar 

  31. Kim, K. H., Watanabe, K., Mulugeta, D., Freund, H-J. & Menzel, D. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 107, 047401 (2011).

    Article  Google Scholar 

  32. Beckerle, J. D. et al. Ultrafast infrared response of adsorbates on metal surfaces: Vibrational lifetime of CO/Pt(111). Phys. Rev. Lett. 64, 2090–2093 (1990).

    Article  CAS  Google Scholar 

  33. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    Article  CAS  Google Scholar 

  34. Olsen, T., Gavnholt, J. & Schiøtz, J. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Phys. Rev. B 79, 035403 (2009).

    Article  Google Scholar 

  35. Gavnholt, J., Olsen, T., Engelund, M. & Schiøtz, J. Δ Self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 78, 075441 (2008).

    Article  Google Scholar 

  36. Wingreen, N. S., Jacobsen, K. W. & Wilkins, J. W. Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989).

    Article  CAS  Google Scholar 

  37. Ho, W. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons and heating. J. Phys. Chem. 100, 13050–13060 (1996).

    Article  CAS  Google Scholar 

  38. Olsen, T. & Schiøtz, J. Origin of power laws doe reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett. 103, 238301 (2009).

    Article  Google Scholar 

  39. Madey, T. E., Yates, J. T., King, D. A. & Uhlaner, C. J. Isotope effect in electron stimulated desorption: Oxygen chemisorbed on tungsten. J. Chem. Phys. 52, 5215–5220 (1970).

    Article  CAS  Google Scholar 

  40. Grillet, N. et al. Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding. ACS Nano. 5, 9450–9462 (2011).

    Article  CAS  Google Scholar 

  41. Persson, B. N. J. On the theory of surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 82, 561–565 (1981).

    Article  CAS  Google Scholar 

  42. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  CAS  Google Scholar 

  43. Watanabe, K., Menzel, D., Nilius, N. & Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  Google Scholar 

  44. Kim, K. H. et al. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 107, 047401 (2011).

    Article  Google Scholar 

  45. Kawazoe, T. et al. Nonadiabatic photodissociation process using an optical near field. J. Chem. Phys. 122, 024715 (2005).

    Article  Google Scholar 

  46. Christopher, P. & Linic, S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. Chem. Catal. Chem. 2, 78–83 (2010).

    CAS  Google Scholar 

  47. Christopher, P. & Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxiation catalysts. J. Am. Chem. Soc. 130, 11264–11265 (2008).

    Article  CAS  Google Scholar 

  48. Enkovaara, J. et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  Google Scholar 

  49. Hammer, B., Hansen, L. & Nørskov, J. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  50. Buatier de Mongeot, F., Cupolillo, A., Valbusa, U. & Rocca, M. Anharmonicity of the O2-Ag(001) chemisorption. J. Chem. Phys. 106, 9297–9304 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from United States Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686) and the National Science Foundation (CBET-0966700, CBET-1132777 and CHE-1111770). S.L. acknowledges the DuPont Young Professor grant and the Camille Dreyfus Teacher-Scholar Award from the Camille Henry Dreyfus Foundation. We also acknowledge David B. Ingram for assistance with FDTD simulations.

Author information

Authors and Affiliations

Authors

Contributions

P.C., H.X., and S.L. developed the project and analysed the results. P.C. carried out experimental work. H.X. performed the DFT simulations. A.M. assisted with analysis. S.L. is the PhD adviser of P.C., H.X. and A.M.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 993 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, P., Xin, H., Marimuthu, A. et al. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater 11, 1044–1050 (2012). https://doi.org/10.1038/nmat3454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing