Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers

Abstract

Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fundamental growth process of MoS2 films and controlled nucleation.
Figure 2: Characterization of the MoS2 triangular domains.
Figure 3: Grains in single-layered MoS2 films.
Figure 4: Line defects in the single-layered MoS2 films.
Figure 5: Electrical properties of MoS2 films.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  4. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  5. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  6. Wang, H. et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 134, 3627–3630 (2012).

    Article  CAS  Google Scholar 

  7. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    Article  CAS  Google Scholar 

  8. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater. 10, 443–449 (2011).

    Article  CAS  Google Scholar 

  9. Palacios, T. Graphene electronics: Thinking outside the silicon box. Nature Nanotech. 6, 464–465 (2011).

    Article  CAS  Google Scholar 

  10. Osada, M. & Sasaki, T. 2D inorganic nanosheets: Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 209–209 (2012).

    Article  Google Scholar 

  11. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  12. Schwierz, F. Nanoelectronics: Flat transistors get off the ground. Nature Nanotech. 6, 135–136 (2011).

    Article  CAS  Google Scholar 

  13. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  14. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  15. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  16. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011).

    Article  Google Scholar 

  17. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011).

    Article  CAS  Google Scholar 

  18. Zeng, Z. et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  19. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  20. Balendhran, S. et al. Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. Nanoscale 4, 461–466 (2012).

    Article  CAS  Google Scholar 

  21. Lin, Y-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    Article  CAS  Google Scholar 

  22. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  23. Liu, K. K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  24. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  25. Margulis, L., Salitra, G., Tenne, R. & Talianker, M. Nested fullerene-like structures. Nature 365, 113–114 (1993).

    Article  CAS  Google Scholar 

  26. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    Article  CAS  Google Scholar 

  27. Weber, T., Muijsers, J. C., van Wolput, J. H. M. C., Verhagen, C. P. J. & Niemantsverdriet, J. W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 100, 14144–14150 (1996).

    Article  CAS  Google Scholar 

  28. Li, X. L. & Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 9, 2726–2731 (2003).

    Article  CAS  Google Scholar 

  29. Li, Q., Newberg, J. T., Walter, E. C., Hemminger, J. C. & Penner, R. M. Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett. 4, 277–281 (2004).

    Article  CAS  Google Scholar 

  30. Song, X. C., Zhao, Y., Zheng, Y. F. & Yang, E. Large-scale synthesis of MoS2 bucky onions. Adv. Eng. Mater. 9, 96–98 (2007).

    Article  CAS  Google Scholar 

  31. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  32. Han, G. H. et al. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011).

    Article  CAS  Google Scholar 

  33. Gao, J., Yip, J., Zhao, J., Yakobson, B. I. & Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 133, 5009–5015 (2011).

    Article  CAS  Google Scholar 

  34. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  35. Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nature Mater. 9, 806–809 (2010).

    Article  CAS  Google Scholar 

  36. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  37. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  CAS  Google Scholar 

  38. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  Google Scholar 

  39. Liu, Y., Zou, X. & Yakobson, B. I. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053–7058 (2012).

    Article  CAS  Google Scholar 

  40. Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  Google Scholar 

  41. Zou, X. L., Liu, Y. Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2012).

    Article  Google Scholar 

  42. Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn (Wiley, 1982).

    Google Scholar 

  43. Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Welch Foundation grant C-1716, the NSF grant DMR-0928297, the US Army Research Office MURI grant W911NF-11-1-0362, the US Office of Naval Research MURI grant N000014-09-1-1066, and the Nanoelectronics Research Corporation contract S201006. This research was also supported in part by the National Science Foundation through grant No. DMR-0938330 and a Wigner Fellowship through the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy (WZ); Oak Ridge National Laboratory’s Shared Research Equipment (ShaRE) User Program (JCI), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The computations were performed at the Cyberinfrastructure for Computational Research funded by NSF under Grant CNS-0821727 and the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097.

Author information

Authors and Affiliations

Authors

Contributions

J.L., P.M.A., J-C.I. and B.I.Y. proposed and supervised the project. S.N. developed and performed the synthesis experiments. S.N., Z.L., G.S. and S.L. performed the material and device performance characterizations. Z.L. performed the dark-field-TEM imaging experiments. W.Z. performed the STEM characterization and part of the dark-field-TEM imaging experiments. X.Z. performed the grain boundary calculations. All authors helped in analysing and interpreting the data. S.N., Z.L., W.Z., X.Z. and J.L. wrote the paper and all authors discussed and revised the final manuscript.

Corresponding author

Correspondence to Jun Lou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najmaei, S., Liu, Z., Zhou, W. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater 12, 754–759 (2013). https://doi.org/10.1038/nmat3673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing