Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stimuli-responsive nanocarriers for drug delivery

Subjects

Abstract

Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-based actuation mechanisms for liposomal drug delivery.
Figure 2: Actuation mechanisms based on the heat generated by an alternating magnetic field (AMF) leading to on-demand pulsatile drug release from mesoporous silica nanoparticles (MSNPs).
Figure 3: Drug delivery from echogenic perfluorocarbon (PFC)-containing nanoemulsions.
Figure 4: Examples of light-triggered drug delivery.
Figure 5: Voltage-responsive vesicles.
Figure 6: pH-sensitive nanocarriers for efficient TAT-peptide exposure.
Figure 7: Enzyme-sensitive drug delivery.

Similar content being viewed by others

References

  1. Yatvin, M. B., Weinstein, J. N., Dennis, W. H. & Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202, 1290–1293 (1978).

    Article  CAS  Google Scholar 

  2. Tagami, T. et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 32, 6570–6578 (2011).

    Article  CAS  Google Scholar 

  3. Al-Ahmady, Z. S. et al. Lipid–peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6, 9335–9346 (2012).

    Article  CAS  Google Scholar 

  4. Chen, K-J. et al. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7, 438–446 (2013).

    Article  CAS  Google Scholar 

  5. Smith, B. et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes). J. Control. Release 153, 187–194 (2011).

    Article  CAS  Google Scholar 

  6. Zhang, J., Chen, H., Xu, L. & Gu, Y. The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J. Control. Release 131, 34–40 (2008).

    Article  CAS  Google Scholar 

  7. Cheng, Y. et al. Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly(ε-caprolactone) micellar nanoparticles. Biomacromolecules 13, 2163–2173 (2012).

    Article  CAS  Google Scholar 

  8. MacEwan, S. R. & Chilkoti, A. Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. Nano Lett. 12, 3322–3328 (2012).

    Article  CAS  Google Scholar 

  9. Lee, S. H., Choi, S. H., Kim, S. H. & Park, T. G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release 125, 25–32 (2008).

    Article  CAS  Google Scholar 

  10. Yang, H. W. et al. Self-protecting core–shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials 32, 6523–6532 (2011).

    Article  CAS  Google Scholar 

  11. Zhang, L. et al. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem. Eur. J. 18, 12512–12521 (2012).

    Article  CAS  Google Scholar 

  12. Hua, M-Y. et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32, 516–527 (2011).

    Article  CAS  Google Scholar 

  13. Plassat, V. et al. Anti-estrogen-loaded superparamagnetic liposomes for intracellular magnetic targeting and treatment of breast cancer tumors. Adv. Funct. Mater. 21, 83–92 (2011).

    Article  CAS  Google Scholar 

  14. Zhang, F. et al. Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett. 12, 61–67 (2012).

    Article  CAS  Google Scholar 

  15. Arias, J. L. et al. Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 5, 1513–1521 (2011).

    Article  CAS  Google Scholar 

  16. Qin, J. et al. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv. Mater. 21, 1354–1357 (2009).

    Article  CAS  Google Scholar 

  17. Cai, K. et al. Magnetically triggered reversible controlled drug delivery from microfabricated polymeric multireservoir devices. Adv. Mater. 21, 4045–4049 (2009).

    Article  CAS  Google Scholar 

  18. Park, J. W., Bae, K. H., Kim, C. & Park, T. G. Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12, 457–465 (2010).

    Article  CAS  Google Scholar 

  19. Prijic, S. et al. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33, 4379–4391 (2012).

    Article  CAS  Google Scholar 

  20. Jenkins, S. I., Pickard, M. R., Granger, N. & Chari, D. M. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano 5, 6527–6538 (2011).

    Article  CAS  Google Scholar 

  21. Al-Deen, F. N., Ho, J., Selomulya, C., Ma, C. & Coppel, R. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27, 3703–3712 (2011).

    Article  CAS  Google Scholar 

  22. Tang, Y. S. et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther. 19, 1187–1195 (2012).

    Article  CAS  Google Scholar 

  23. Sapet, C., Pellegrino, C., Laurent, N., Sicard, F. & Zelphati, O. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm. Res. 29, 1203–1218 (2012).

    Article  CAS  Google Scholar 

  24. Muthana, M. et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 15, 902–910 (2008).

    Article  CAS  Google Scholar 

  25. Chorny, M., Hood, E., Levy, R. J. & Muzykantov, V. R. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J. Control. Release 146, 144–151 (2010).

    Article  CAS  Google Scholar 

  26. Huang, H. Y. et al. Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo. J. Mater. Chem. 22, 8566–8573 (2012).

    Article  CAS  Google Scholar 

  27. Katagiri, K. et al. Magnetoresponsive on-demand release of hybrid liposomes formed from Fe3O4 nanoparticles and thermosensitive block copolymers. Small 7, 1683–1689 (2011).

    Article  CAS  Google Scholar 

  28. Satarkar, N. S. & Zach Hilt, J. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater. 4, 11–16 (2008).

    Article  CAS  Google Scholar 

  29. Hu, S-H., Chen, S-Y. & Gao, X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 6, 2558–2565 (2012).

    Article  CAS  Google Scholar 

  30. Bringas, E. et al. Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chem. Commun. 48, 5647–5649 (2012).

    Article  CAS  Google Scholar 

  31. Hu, S-H., Liu, D-M., Tung, W-L., Liao, C-F. & Chen, S-Y. Surfactant-free, self-assembled PVA-iron oxide/silica core–shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv. Funct. Mater. 18, 2946–2955 (2008).

    Article  CAS  Google Scholar 

  32. Hu, S-H., Chen, S-Y., Liu, D-M. & Hsiao, C-S. Core/single-crystal-shell nanospheres for controlled drug release via a magnetically triggered rupturing mechanism. Adv. Mater. 20, 2690–2695 (2008).

    Article  CAS  Google Scholar 

  33. Pradhan, P. et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 142, 108–121 (2010).

    Article  CAS  Google Scholar 

  34. Thomas, C. R. et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J. Am. Chem. Soc. 132, 10623–10625 (2010).

    Article  CAS  Google Scholar 

  35. Hoare, T. et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett. 11, 1395–1400 (2011).

    Article  CAS  Google Scholar 

  36. Ruiz-Hernaández, E., Baeza, A. & Vallet-Regiá, M. Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5, 1259–1266 (2011).

    Article  CAS  Google Scholar 

  37. Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).

    Article  CAS  Google Scholar 

  38. Stanley, S. A. et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336, 604–608 (2012).

    Article  CAS  Google Scholar 

  39. Schroeder, A. et al. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release 137, 63–68 (2009).

    Article  CAS  Google Scholar 

  40. Kheirolomoom, A. et al. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol. Pharm. 7, 1948–1958 (2010).

    Article  CAS  Google Scholar 

  41. Rapoport, N. Y., Kennedy, A. M., Shea, J. E., Scaife, C. L. & Nam, K. H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release 138, 268–276 (2009).

    Article  CAS  Google Scholar 

  42. Wang, C. H. et al. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 33, 1939–1947 (2012).

    Article  CAS  Google Scholar 

  43. Tran, M. A. et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 68, 7638–7649 (2008).

    Article  CAS  Google Scholar 

  44. Javadi, M., Pitt, W. G., Belanp, D. M., Tsosie, N. H. & Hartley, J. M. Encapsulating nanoemulsions inside eliposomes for ultrasonic drug delivery. Langmuir 28, 14720–14729 (2012).

    Article  CAS  Google Scholar 

  45. Britton, G. L. et al. In vivo therapeutic gas delivery for neuroprotection with echogenic liposomes. Circulation 122, 1578–1587 (2010).

    Article  CAS  Google Scholar 

  46. Negishi, Y. et al. Enhanced laminin-derived peptide AG73-mediated liposomal gene transfer by bubble liposomes and ultrasound. Mol. Pharm. 7, 217–226 (2010).

    Article  CAS  Google Scholar 

  47. Negishi, Y. et al. Systemic delivery systems of angiogenic gene by novel bubble liposomes containing cationic lipid and ultrasound exposure. Mol. Pharm. 9, 1834–1840 (2012).

    Article  CAS  Google Scholar 

  48. Un, K. et al. Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol. Pharm. 8, 543–554 (2011).

    Article  CAS  Google Scholar 

  49. Ranjan, A. et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit V×2 tumor model. J. Control. Release 158, 487–494 (2012).

    Article  CAS  Google Scholar 

  50. Lu, J., Choi, E., Tamanoi, F. & Zink, J. I. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4, 421–426 (2008).

    Article  CAS  Google Scholar 

  51. Yuan, Q. et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid. ACS Nano 6, 6337–6344 (2012).

    Article  CAS  Google Scholar 

  52. Yan, H. et al. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo. Angew. Chem. Int. Ed. 51, 8373–8377 (2012).

    Article  CAS  Google Scholar 

  53. Liu, Y. C. et al. Photo-assisted gene delivery using light-responsive catanionic vesicles. Langmuir 25, 5713–5724 (2009).

    Article  CAS  Google Scholar 

  54. Tong, R., Hemmati, H. D., Langer, R. & Kohane, D. S. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012).

    Article  CAS  Google Scholar 

  55. He, D., He, X., Wang, K., Cao, J. & Zhao, Y. A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles. Langmuir 28, 4003–4008 (2012).

    Article  CAS  Google Scholar 

  56. Agasti, S. S. et al. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 131, 5728–5729 (2009).

    Article  CAS  Google Scholar 

  57. Vivero-Escoto, J. L., Slowing, I. I., Wu, C-W. & Lin, V. S. Y. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 131, 3462–3463 (2009).

    Article  CAS  Google Scholar 

  58. Azagarsamy, M. A., Alge, D. L., Radhakrishnan, S. J., Tibbitt, M. W. & Anseth, K. S. Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 13, 2219–2224 (2012).

    Article  CAS  Google Scholar 

  59. Schroeder, A. et al. Remotely activated protein-producing nanoparticles. Nano Lett. 12, 2685–2689 (2012).

    Article  CAS  Google Scholar 

  60. Yang, J. et al. Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer. Adv. Mater. 21, 4339–4342 (2009).

    Article  CAS  Google Scholar 

  61. You, J. et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72, 4777–4786 (2012).

    Article  CAS  Google Scholar 

  62. Xiao, Z. et al. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. 54, 11853–11857 (2012).

    Article  CAS  Google Scholar 

  63. Chang, Y. T. et al. Near-infrared light-responsive intracellular drug and siRNA release using Au nanoensembles with oligonucleotide-capped silica shell. Adv. Mater. 24, 3309–3314 (2012).

    Article  CAS  Google Scholar 

  64. Lee, S. M. et al. Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. 50, 7581–7586 (2011).

    Article  CAS  Google Scholar 

  65. Ma, Y. et al. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 23, 815–822 (2012).

    Article  CAS  Google Scholar 

  66. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009).

    Article  CAS  Google Scholar 

  67. Agarwal, A., Mackey, M. A., El-Sayed, M. A. & Bellamkonda, R. V. Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods. ACS Nano 5, 4919–4926 (2011).

    Article  CAS  Google Scholar 

  68. Lukianova-Hleb, E. Y., Belyanin, A., Kashinath, S., Wu, X. & Lapotko, D. O. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33, 1821–1826 (2012).

    Article  CAS  Google Scholar 

  69. Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E. & Zare, R. N. Drug release from electric-field-responsive nanoparticles. ACS Nano 6, 227–233 (2011).

    Article  CAS  Google Scholar 

  70. Im, J. S., Bai, B. C. & Lee, Y-S. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 31, 1414–1419 (2010).

    Article  CAS  Google Scholar 

  71. Liu, K-H., Liu, T-Y., Chen, S-Y. & Liu, D-M. Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater. 4, 1038–1045 (2008).

    Article  CAS  Google Scholar 

  72. Yan, Q. et al. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. 132, 9268–9270 (2010).

    Article  CAS  Google Scholar 

  73. Kim, H., Jeong, S-M. & Park, J-W. Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod–coils. J. Am. Chem. Soc. 133, 5206–5209 (2011).

    Article  CAS  Google Scholar 

  74. Kim, J. A. & Lee, W. G. Role of weakly polarized nanoparticles in electroporation. Nanoscale 3, 1526–1532 (2011).

    Article  CAS  Google Scholar 

  75. Wang, S., Zhang, X., Yu, B., Lee, R. J. & Lee, L. J. Targeted nanoparticles enhanced flow electroporation of antisense oligonucleotides in leukemia cells. Biosens. Bioelectron. 26, 778–783 (2010).

    Article  CAS  Google Scholar 

  76. Tomoda, K. et al. Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B 97, 84–89 (2012).

    Article  CAS  Google Scholar 

  77. Chen, H. et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J. Control. Release 139, 63–72 (2009).

    Article  CAS  Google Scholar 

  78. Dohnert, M. B. et al. Gold nanoparticles and diclofenac diethylammonium administered by iontophoresis reduce inflammatory cytokines expression in Achilles tendinitis. Int. J. Nanomed. 7, 1651–1657 (2012).

    Article  CAS  Google Scholar 

  79. Chopra, P., Hao, J. & Li, S. K. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J. Control. Release 160, 96–104 (2012).

    Article  CAS  Google Scholar 

  80. Deng, Z. et al. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32, 4976–4986 (2011).

    Article  CAS  Google Scholar 

  81. Min, K. H. et al. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release 144, 259–266 (2010).

    Article  CAS  Google Scholar 

  82. Gao, G. H. et al. The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 33, 9157–9164 (2012).

    Article  CAS  Google Scholar 

  83. Lee, E. S. et al. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 129, 228–236 (2008).

    Article  CAS  Google Scholar 

  84. Koren, E., Apte, A., Jani, A. & Torchilin, V. P. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release 160, 264–273 (2012).

    Article  CAS  Google Scholar 

  85. Quan, C-Y. et al. Core–shell nanosized assemblies mediated by the α–β cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 4, 4211–4219 (2010).

    Article  CAS  Google Scholar 

  86. Karve, S., Bandekar, A., Ali, M. R. & Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials 31, 4409–4416 (2010).

    Article  CAS  Google Scholar 

  87. Du, J-Z., Du, X-J., Mao, C-Q. & Wang, J. Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 133, 17560–17563 (2011).

    Article  CAS  Google Scholar 

  88. Radovic-Moreno, A. F. et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6, 4279–4287 (2012).

    Article  CAS  Google Scholar 

  89. Wang, X-Q. & Zhang, Q. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 82, 219–229 (2012).

    Article  CAS  Google Scholar 

  90. Qu, W. et al. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1. Int. J. Nanomed. 7, 4983–4994 (2012).

    CAS  Google Scholar 

  91. Yang, Y. Q., Zheng, L. S., Guo, X. D., Qian, Y. & Zhang, L. J. pH-sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs. Biomacromolecules 12, 116–122 (2010).

    Article  CAS  Google Scholar 

  92. Lee, C-H., Lo, L-W., Mou, C-Y. & Yang, C-S. Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv. Funct. Mater. 18, 3283–3292 (2008).

    Article  CAS  Google Scholar 

  93. Sung, H. W., Sonaje, K., Liao, Z. X., Hsu, L. W. & Chuang, E. Y. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc. Chem. Res. 45, 619–629 (2012).

    Article  CAS  Google Scholar 

  94. Griset, A. P. et al. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc. 131, 2469–2471 (2009).

    Article  CAS  Google Scholar 

  95. You, J-O. & Auguste, D. T. Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer. Nano Lett. 9, 4467–4473 (2009).

    Article  CAS  Google Scholar 

  96. Zhu, S., Lansakara-P, D. S. P., Li, X. & Cui, Z. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjugate Chem. 23, 966–980 (2012).

    Article  CAS  Google Scholar 

  97. Jin, Y. et al. Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 12, 3460–3468 (2011).

    Article  CAS  Google Scholar 

  98. Du, Y., Chen, W., Zheng, M., Meng, F. & Zhong, Z. pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33, 7291–7299 (2012).

    Article  CAS  Google Scholar 

  99. Ahmed, M. & Narain, R. Intracellular delivery of DNA and enzyme in active form using degradable carbohydrate-based nanogels. Mol. Pharm. 9, 3160–3170 (2012).

    Article  CAS  Google Scholar 

  100. Ren, D., Kratz, F. & Wang, S-W. Protein nanocapsules containing doxorubicin as a pH-responsive delivery system. Small 7, 1051–1060 (2011).

    Article  CAS  Google Scholar 

  101. Lee, C-H. et al. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 49, 8214–8219 (2010).

    Article  CAS  Google Scholar 

  102. Parrott, M. C. et al. Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J. Am. Chem. Soc. 134, 7978–7982 (2012).

    Article  CAS  Google Scholar 

  103. Meng, H. et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 132, 12690–12697 (2010).

    Article  CAS  Google Scholar 

  104. Sémiramoth, N. et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6, 3820–3831 (2012).

    Article  CAS  Google Scholar 

  105. Fan, J., Zeng, F., Wu, S. & Wang, X. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 13, 4126–4137 (2012).

    Article  CAS  Google Scholar 

  106. Chen, T. et al. Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano 5, 7866–7873 (2011).

    Article  CAS  Google Scholar 

  107. Chang Kang, H. & Bae, Y. H. Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide. Biomaterials 32, 4914–4924 (2011).

    Article  CAS  Google Scholar 

  108. Zhang, C. Y. et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 33, 6273–6283 (2012).

    Article  CAS  Google Scholar 

  109. Kim, D., Lee, E. S., Oh, K. T., Gao, Z. G. & Bae, Y. H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4, 2043–2050 (2008).

    Article  CAS  Google Scholar 

  110. Thambi, T. et al. Bioreducible block copolymers based on poly(ethylene glycol) and poly(γ-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjugate Chem. 22, 1924–1931 (2011).

    Article  CAS  Google Scholar 

  111. Lee, E. S., Kim, D., Youn, Y. S., Oh, K. T. & Bae, Y. H. A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. 120, 2452–2455 (2008).

    Article  Google Scholar 

  112. Su, X., Fricke, J., Kavanagh, D. G. & Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm. 8, 774–787 (2011).

    Article  CAS  Google Scholar 

  113. Zhou, T. et al. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater. 9, 4546–4557 (2012).

    Article  CAS  Google Scholar 

  114. Dehousse, V., Garbacki, N., Colige, A. & Evrard, B. Development of pH–responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 31, 1839–1849 (2010).

    Article  CAS  Google Scholar 

  115. Kim, I-Y. et al. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J. Control. Release 140, 55–60 (2009).

    Article  CAS  Google Scholar 

  116. Han, S. et al. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small 8, 1596–1606 (2012).

    Article  CAS  Google Scholar 

  117. Sawant, R. R. et al. Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery. Biomaterials 33, 3942–3951 (2012).

    Article  CAS  Google Scholar 

  118. Auguste, D. T. et al. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J. Control. Release 130, 266–274 (2008).

    Article  CAS  Google Scholar 

  119. Simard, P. & Leroux, J-C. In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. Mol. Pharm. 7, 1098–1107 (2010).

    Article  CAS  Google Scholar 

  120. Lee, S. M., O'Halloran, T. V. & Nguyen, S. T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc. 132, 17130–17138 (2010).

    Article  CAS  Google Scholar 

  121. Sun, Y. et al. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials 31, 7124–7131 (2010).

    Article  CAS  Google Scholar 

  122. Li, J. et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 33, 2310–2320 (2012).

    Article  CAS  Google Scholar 

  123. Wang, Y-C., Wang, F., Sun, T-M. & Wang, J. Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjugate Chem. 22, 1939–1945 (2011).

    Article  CAS  Google Scholar 

  124. Koo, A. N. et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem. Commun. 6570–6572 (2008).

  125. Li, Y. et al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 32, 6633–6645 (2011).

    Article  CAS  Google Scholar 

  126. Kim, H. et al. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv. Mater. 22, 4280–4283 (2010).

    Article  CAS  Google Scholar 

  127. Kurtoglu, Y. E. et al. Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 30, 2112–2121 (2009).

    Article  CAS  Google Scholar 

  128. Ong, W., Yang, Y., Cruciano, A. C. & McCarley, R. L. Redox-triggered contents release from liposomes. J. Am. Chem. Soc. 130, 14739–14744 (2008).

    Article  CAS  Google Scholar 

  129. Ryu, J. H. et al. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J. Am. Chem. Soc. 132, 17227–17235 (2010).

    Article  CAS  Google Scholar 

  130. Kim, S. H., Jeong, J. H., Kim, T. I., Kim, S. W. & Bull, D. A. VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol. Pharm. 6, 718–726 (2009).

    Article  CAS  Google Scholar 

  131. Vader, P., van der Aa, L. J., Engbersen, J. F., Storm, G. & Schiffelers, R. M. Disulfide-based poly(amido amine)s for siRNA delivery: effects of structure on siRNA complexation, cellular uptake, gene silencing and toxicity. Pharm. Res. 28, 1013–1022 (2011).

    Article  CAS  Google Scholar 

  132. Stevenson, M. et al. Delivery of siRNA mediated by histidine-containing reducible polycations. J. Control. Release 130, 46–56 (2008).

    Article  CAS  Google Scholar 

  133. Suma, T. et al. Smart multilayered assembly for biocompatible siRNA delivery featuring dissolvable silica, endosome-disrupting polycation, and detachable PEG. ACS Nano 6, 6693–6705 (2012).

    Article  CAS  Google Scholar 

  134. Takemoto, H. et al. Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31, 8097–8105 (2010).

    Article  CAS  Google Scholar 

  135. Mok, H., Lee, S. H., Park, J. W. & Park, T. G. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Mater. 9, 272–278 (2010).

    Article  CAS  Google Scholar 

  136. Wilson, D. S. et al. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nature Mater. 9, 923–928 (2010).

    Article  CAS  Google Scholar 

  137. Zhu, L., Kate, P. & Torchilin, V. P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6, 3491–3498 (2012).

    Article  CAS  Google Scholar 

  138. Harris, T. J. et al. Protease-triggered unveiling of bioactive nanoparticles. Small 4, 1307–1312 (2008).

    Article  CAS  Google Scholar 

  139. Hatakeyama, H. et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32, 4306–4316 (2011).

    Article  CAS  Google Scholar 

  140. Singh, N. et al. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J. Am. Chem. Soc. 133, 19582–19585 (2011).

    Article  CAS  Google Scholar 

  141. Banerjee, J. et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjugate Chem. 20, 1332–1339 (2009).

    Article  CAS  Google Scholar 

  142. Bernardos, A. et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4, 6353–6368 (2010).

    Article  CAS  Google Scholar 

  143. Lee, J. S., Groothuis, T., Cusan, C., Mink, D. & Feijen, J. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials 32, 9144–9153 (2011).

    Article  CAS  Google Scholar 

  144. Asai, D. et al. Specific transgene expression in HIV-infected cells using protease-cleavable transcription regulator. J. Control. Release 141, 52–61 (2010).

    Article  CAS  Google Scholar 

  145. Asai, D. et al. Inflammatory cell-specific transgene expression system responding to Iκ-B kinase beta activation. J. Gene Med. 11, 624–632 (2009).

    Article  CAS  Google Scholar 

  146. Xiong, M-H. et al. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J. Am. Chem. Soc. 134, 4355–4362 (2012).

    Article  CAS  Google Scholar 

  147. Wang, B. et al. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 25, 12522–12528 (2009).

    Article  CAS  Google Scholar 

  148. Kim, H., Kang, Y. J., Kang, S. & Kim, K. T. Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. J. Am. Chem. Soc. 134, 4030–4033 (2012).

    Article  CAS  Google Scholar 

  149. Kim, H., Kang, Y. J., Jeong, E. S., Kang, S. & Kim, K. T. Glucose-responsive disassembly of polymersomes of sequence-specific boroxole-containing block copolymers under physiologically relevant conditions. ACS Macro Lett. 1, 1194–1198 (2012).

    Article  CAS  Google Scholar 

  150. Yao, Y., Zhao, L., Yang, J. & Yang, J. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH. Biomacromolecules 13, 1837–1844 (2012).

    Article  CAS  Google Scholar 

  151. Jin, X. et al. Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules 10, 1337–1345 (2009).

    Article  CAS  Google Scholar 

  152. Zhao, L. et al. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. J. Mater. Chem. 22, 12319–12328 (2012).

    Article  CAS  Google Scholar 

  153. Zhao, Y., Trewyn, B. G., Slowing, I. I. & Lin, V. S. Y. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc. 131, 8398–8400 (2009).

    Article  CAS  Google Scholar 

  154. Zhao, W. et al. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chem. Commun. 47, 9459–9461 (2011).

    Article  CAS  Google Scholar 

  155. Yoon, S., Kim, W. J. & Yoo, H. S. Dual-responsive breakdown of nanostructures with high doxorubicin payload for apoptotic anticancer therapy. Small 9, 284–293 (2012).

    Article  CAS  Google Scholar 

  156. Dai, J., Lin, S., Cheng, D., Zou, S. & Shuai, X. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. 50, 9404–9408 (2011).

    Article  CAS  Google Scholar 

  157. Cui, W. et al. Dual-responsive controlled drug delivery based on ionically assembled nanoparticles. Langmuir 28, 9413–9420 (2012).

    Article  CAS  Google Scholar 

  158. Ta, T., Convertine, A. J., Reyes, C. R., Stayton, P. S. & Porter, T. M. Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11, 1915–1920 (2010).

    Article  CAS  Google Scholar 

  159. Fang, W., Yang, J., Gong, J. & Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 22, 842–848 (2012).

    Article  CAS  Google Scholar 

  160. Baeza, A., Guisasola, E., Ruiz-Hernández, E. & Vallet-Regí, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012).

    Article  CAS  Google Scholar 

  161. Han, D., Tong, X. & Zhao, Y. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28, 2327–2331 (2012).

    Article  CAS  Google Scholar 

  162. Nahire, R. et al. Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol. Pharm. 9, 2554–2564 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some results described in this Review were obtained thanks to the European Research Council Advanced Grant TERNANOMED (European Research Council under the European Community's Seventh Framework Programme FP7/2007-2013; grant agreement no. 249835). CNRS and Université Paris-Sud are also acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Couvreur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater 12, 991–1003 (2013). https://doi.org/10.1038/nmat3776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3776

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research