Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

Abstract

Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a ‘volcano’ relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface oxygen exchange kinetics and stability on LSC dense thin film cathodes.
Figure 2: Surface chemical stability on LSC dense thin films.
Figure 3: Oxidation state of Co based on Co L2,3-edge XAS on LSC dense thin films.
Figure 4: Oxidation state on LSC based on the valence band and O K-edge.
Figure 5: Coordination environment of Ti on LSC-Ti15.
Figure 6: Dependence of oxygen surface exchange kinetics on the reducibility of the LSC surface.

Similar content being viewed by others

References

  1. Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H. & Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chem. 5, 916–923 (2013).

    Article  CAS  Google Scholar 

  2. Lee, K. T. & Wachsman, E. D. Role of nanostructures on SOFC performance at reduced temperatures. MRS Bull. 39, 783–791 (2014).

    Article  CAS  Google Scholar 

  3. Bork, A. H., Kubicek, M., Struzik, M. & Rupp, J. L. M. Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J. Mater. Chem. A 3, 15546–15557 (2015).

    Article  CAS  Google Scholar 

  4. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  Google Scholar 

  5. Hayd, J., Yokokawa, H. & Ivers-Tiffée, E. Hetero-interfaces at nanoscaled (La, Sr)CoO3−δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 160, F351–F359 (2013).

    Article  CAS  Google Scholar 

  6. Carter, S. et al. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ion. 53, 597–605 (1992).

    Article  Google Scholar 

  7. Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  CAS  Google Scholar 

  8. Cai, Z., Kubicek, M., Fleig, J. & Yildiz, B. Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chem. Mater. 24, 1116–1127 (2012).

    Article  CAS  Google Scholar 

  9. Hjalmarsson, P., Søgaard, M. & Mogensen, M. Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3−δ as porous SOFC-cathode. Solid State Ion. 179, 1422–1426 (2008).

    Article  CAS  Google Scholar 

  10. Kubicek, M., Limbeck, A., Frömling, T., Hutter, H. & Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. J. Electrochem. Soc. 158, B727–B734 (2011).

    Article  CAS  Google Scholar 

  11. Lee, W., Han, J. W., Chen, Y., Cai, Z. & Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013).

    Article  CAS  Google Scholar 

  12. Yi, J. & Schroeder, M. High temperature degradation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes in atmospheres containing concentrated carbon dioxide. J. Membr. Sci. 378, 163–170 (2011).

    Article  CAS  Google Scholar 

  13. Zhu, X. et al. Development of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with an improved stability via La0.8Sr0.2MnO3−δ film impregnation. Int. J. Hydrog. Energy 38, 5375–5382 (2013).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Segregated chemistry and structure on (001) and (100) surfaces of (La1−xSrx)2CoO4 override the crystal anisotropy in oxygen exchange kinetics. Chem. Mater. 27, 5436–5450 (2015).

    Article  CAS  Google Scholar 

  15. Druce, J. et al. Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593–3599 (2014).

    Article  CAS  Google Scholar 

  16. Dulli, H., Dowben, P. A., Liou, S. H. & Plummer, E. W. Surface segregation and restructuring of colossal-magnetoresistant manganese perovskites La0.65Sr0.35MnO3 . Phys. Rev. B 62, R14629–R14632 (2000).

    Article  CAS  Google Scholar 

  17. Tellez, H., Druce, J., Kilner, J. A. & Ishihara, T. Relating surface chemistry and oxygen surface exchange in LnBaCo2O5+δ air electrodes. Faraday Discuss. 182, 145–157 (2015).

    Article  CAS  Google Scholar 

  18. Chen, Y. et al. Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1−xFexO3 surfaces. Energy Environ. Sci. 5, 7979–7988 (2012).

    Article  CAS  Google Scholar 

  19. Gong, Y. et al. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013).

    Article  CAS  Google Scholar 

  20. Lee, D. et al. Enhanced oxygen surface exchange kinetics and stability on epitaxial La0.8Sr0.2CoO3−δ thin films by La0.8Sr0.2MnO3−δ decoration. J. Phys. Chem. C 118, 14326–14334 (2014).

    Article  CAS  Google Scholar 

  21. Kuklja, M. M., Kotomin, E. A., Merkle, R., Mastrikov, Y. A. & Maier, J. Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013).

    Article  CAS  Google Scholar 

  22. Bikondoa, O. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nature Mater. 5, 189–192 (2006).

    Article  CAS  Google Scholar 

  23. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  24. Schaub, R. et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2 . Phys. Rev. Lett. 87, 266104 (2001).

    Article  CAS  Google Scholar 

  25. Ganduglia-Pirovano, M. V., Hofmann, A. & Sauer, J. Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf. Sci. Rep. 62, 219–270 (2007).

    Article  CAS  Google Scholar 

  26. Carrasco, J., Lopez, N. & Illas, F. First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides. Phys. Rev. Lett. 93, 225502 (2004).

    Article  CAS  Google Scholar 

  27. Janotti, A. et al. Hybrid functional studies of the oxygen vacancy in TiO2 . Phys. Rev. B 81, 085212 (2010).

    Article  Google Scholar 

  28. Kofstad, P. & Anderson, P. B. Gravimetric studies of the defect structure of α-Nb2O5 . J. Phys. Chem. Solids 21, 280–286 (1961).

    Article  CAS  Google Scholar 

  29. Zheng, J. X., Ceder, G., Maxisch, T., Chim, W. K. & Choi, W. K. First-principles study of native point defects in hafnia and zirconia. Phys. Rev. B 75, 104112 (2007).

    Article  Google Scholar 

  30. Mizusaki, J., Mima, Y., Yamauchi, S., Fueki, K. & Tagawa, H. Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ . J. Solid State Chem. 80, 102–111 (1989).

    Article  CAS  Google Scholar 

  31. Sommeling, P. M. et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110, 19191–19197 (2006).

    Article  CAS  Google Scholar 

  32. Tsvetkov, N. A., Larina, L. L., Shevaleevskiy, O., Al-Ammar, E. A. & Ahn, B. T. Design of conduction band structure of TiO2 electrode using Nb doping for highly efficient dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 20, 904–911 (2012).

    Article  CAS  Google Scholar 

  33. Salmeron, M. & Schlögl, R. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    Article  CAS  Google Scholar 

  34. Feng, Z. A., El Gabaly, F., Ye, X., Shen, Z.-X. & Chueh, W. C. Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface. Nature Commun. 5, 4374 (2014).

    Article  CAS  Google Scholar 

  35. Grass, M. E. et al. New ambient pressure photoemission endstation at Advanced Light Source Beamline 9.3.2. Rev. Sci. Instrum. 81, 053106 (2010).

    Article  Google Scholar 

  36. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nature Commun. 6, 6097 (2015).

    Article  CAS  Google Scholar 

  37. Crumlin, E. J. et al. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ. Sci. 5, 6081–6088 (2012).

    Article  CAS  Google Scholar 

  38. Hu, Z. et al. Difference in spin state and covalence between La1−xSrxCoO3 and La2−xSrxLi0.5Co0.5O4 . J. Alloys Compd. 343, 5–13 (2002).

    Article  CAS  Google Scholar 

  39. Mizokawa, T. et al. Photoemission and X-ray-absorption study of misfit-layered (Bi, Pb)-Sr-Co-O compounds: electronic structure of a hole-doped Co-O triangular lattice. Phys. Rev. B 64, 115104 (2001).

    Article  Google Scholar 

  40. Moodenbaugh, A. et al. Hole-state density of La1−xSrxCoO3−δ (0 x 0.5) across the insulator/metal phase boundary. Phys. Rev. B 61, 5666–5671 (2000).

    Article  CAS  Google Scholar 

  41. Thomas, A. G. et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys. Rev. B 75, 035105 (2007).

    Article  Google Scholar 

  42. van der Laan, G. Polaronic satellites in X-ray-absorption spectra. Phys. Rev. B 41, 12366–12368 (1990).

    Article  CAS  Google Scholar 

  43. Abbate, M. et al. Electronic structure and spin-state transition of LaCoO3 . Phys. Rev. B 47, 16124–16130 (1993).

    Article  CAS  Google Scholar 

  44. Copie, O. et al. Structural and magnetic properties of Co-doped (La, Sr)TiO3 epitaxial thin films probed using X-ray magnetic circular dichroism. J. Phys. Condens. Matter. 21, 406001 (2009).

    Article  CAS  Google Scholar 

  45. Fabricius, G. et al. Electronic structure of cubic SrHfO3: ferroelectric stability and detailed comparison with SrTiO3 . Phys. Rev. B 55, 164–168 (1997).

    Article  CAS  Google Scholar 

  46. Lee, J. et al. Imprint and oxygen deficiency in (Pb, La)(Zr, Ti)O3 thin film capacitors with La-Sr-Co-O electrodes. Appl. Phys. Lett. 66, 1337–1339 (1995).

    Article  CAS  Google Scholar 

  47. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  48. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004).

    Article  CAS  Google Scholar 

  49. Jamnik, J. & Maier, J. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3, 1668–1678 (2001).

    Article  CAS  Google Scholar 

  50. Baumann, F. S., Fleig, J., Habermeier, H.-U. & Maier, J. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3−δ model electrodes. Solid State Ion. 177, 1071–1081 (2006).

    Article  CAS  Google Scholar 

  51. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding support from the NSF CAREER Award of the National Science Foundation, Division of Materials Research, Ceramics Program, Grant No. 1055583, and from the National Aeronautics and Space Administration (NASA) in support of the Mars Oxygen ISRU Experiment (MOXIE), an instrument on the Mars 2020 rover mission. We thank M. Youssef for useful discussions on the defects in LSC and Q. Liu for experiment assistance at Advanced Light Source Beamline 9.3.2. The authors also acknowledge the use of the Center for Materials Science and Engineering, an MRSEC Shared Experimental Facility of the NSF at MIT, supported by the NSF under award number DMR-1419807. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

N.T. and Q.L. prepared the samples. N.T. performed electrochemical measurements. Q.L., N.T., B.Y. and E.J.C. performed XPS and XAS measurements. All authors analysed and discussed the results and wrote the paper. B.Y. designed and supervised the research.

Corresponding authors

Correspondence to Nikolai Tsvetkov or Bilge Yildiz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, N., Lu, Q., Sun, L. et al. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nature Mater 15, 1010–1016 (2016). https://doi.org/10.1038/nmat4659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4659

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing