Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface phononic graphene

Abstract

Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization1,2, tunnelling with exponential decay3, ballistic4, and diffusion behaviours5 due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene6 have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects7,8,9. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Configuration of an integrated surface phononic graphene.
Figure 2: SAW transport behaviours in different regimes.
Figure 3: SAW temporal beating effect-surface phononic Zitterbewegung.

Similar content being viewed by others

References

  1. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  CAS  Google Scholar 

  2. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008).

    Article  CAS  Google Scholar 

  3. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article  CAS  Google Scholar 

  4. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  5. Labeyrie, G. et al. Slow diffusion of light in a cold atomic cloud. Phys. Rev. Lett. 91, 223904 (2003).

    Article  CAS  Google Scholar 

  6. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  7. Schrödinger, E. Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys. 24, 418–428 (1930).

    Google Scholar 

  8. Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

    Article  CAS  Google Scholar 

  9. Zhang, X. & Liu, Z. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals. Phys. Rev. Lett. 101, 264303 (2008).

    Article  Google Scholar 

  10. Thaller, B. The Dirac Equation (Springer, 1992).

    Book  Google Scholar 

  11. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  12. Novoselov, K. S. A. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  13. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  14. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  CAS  Google Scholar 

  15. Zhang, X. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008).

    Article  Google Scholar 

  16. Vaishnav, J. Y. & Clark, C. W. Observing Zitterbewegung with ultracold atoms. Phys. Rev. Lett. 100, 153002 (2008).

    Article  CAS  Google Scholar 

  17. Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotech. 8, 625–633 (2013).

    Article  CAS  Google Scholar 

  18. Singha, A. et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011).

    Article  CAS  Google Scholar 

  19. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  CAS  Google Scholar 

  20. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).

    Article  CAS  Google Scholar 

  21. Zandbergen, S. R. & de Dood, M. J. Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene. Phys. Rev. Lett. 104, 043903 (2010).

    Article  Google Scholar 

  22. Bittner, S. et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Phys. Rev. B 82, 014301 (2010).

    Article  Google Scholar 

  23. Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Topological transition of Dirac points in a microwave experiment. Phys. Rev. Lett. 110, 033902 (2013).

    Article  Google Scholar 

  24. Plotnik, Y. et al. Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13, 57–62 (2014).

    Article  CAS  Google Scholar 

  25. Torrent, D. & Sánchez-Dehesa, J. Acoustic analogue of graphene: observation of Dirac cones in acoustic surface waves. Phys. Rev. Lett. 108, 174301 (2012).

    Article  Google Scholar 

  26. Lu, J. et al. Dirac cones in two-dimensional artificial crystals for classical waves. Phys. Rev. B 89, 134302 (2014).

    Article  Google Scholar 

  27. Szabo, T. L. & Slobodnik, A. J. The effect of diffraction on the design of acoustic surface wave devices. IEEE Trans. Sonics Ultrason. 20, 240–251 (1973).

    Article  CAS  Google Scholar 

  28. Gustafsson, M. V., Santos, P. V., Johansson, G. & Delsing, P. Local probing of propagating acoustic waves in a gigahertz echo chamber. Nat. Phys. 8, 338–343 (2012).

    Article  CAS  Google Scholar 

  29. Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    Article  CAS  Google Scholar 

  30. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    Article  CAS  Google Scholar 

  31. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys.http://dx.doi.org/10.1038/nphys3867 (in the press).

  32. Khelif, A., Achaoui, Y., Benchabane, S., Laude, V. & Aoubiza, B. Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface. Phys. Rev. B 81, 214303 (2010).

    Article  Google Scholar 

  33. Sánchez-Pérez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998).

    Article  Google Scholar 

  34. Katsnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157–160 (2006).

    Article  CAS  Google Scholar 

  35. Tworzydło, J., Trauzettel, B. & Titov, M. et al. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    Article  Google Scholar 

  36. Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

    Article  Google Scholar 

  37. Rakich, P. T., Dahlem, M. S. & Tandon, S. et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat. Mater. 5, 93–96 (2006).

    Article  CAS  Google Scholar 

  38. Bouchaud, J. P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).

    Article  Google Scholar 

  39. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Shi and X. Zhang for helpful discussions. This work was jointly supported by the National Basic Research Program of China (Grant No. 2012CB921503, No. 2013CB632904 and No. 2013CB632702), the National Nature Science Foundation of China (Grant No. 11134006, No. 11474158, and No. 11404164), and the Natural Science Foundation of Jiangsu Province (BK20140019). We also acknowledge the project funded by the Priority Academic Program Development of Jiangsu Higher Education (PAPD) and China Postdoctoral Science Foundation (Grant No. 2012M511249 and No. 2013T60521). L.F. acknowledges support from the National Science Foundation (DMR-1506884 and ECCS-1507312).

Author information

Authors and Affiliations

Authors

Contributions

M.-H.L. and X.-P.L. conceived the idea. M.-H.L., X.-P.L. and Y.-F.C. coordinated and guided the project. S.-Y.Y. designed the devices, fabricated the samples and carried out the measurements. X.-C.S. performed the theoretical analysis. All the authors contributed to discussion of the project. S.-Y.Y., X.-P.L., L.F. and M.-H.L. prepared the manuscript with revisions from other authors.

Corresponding authors

Correspondence to Xiao-Ping Liu, Ming-Hui Lu or Yan-Feng Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 28443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, SY., Sun, XC., Ni, X. et al. Surface phononic graphene. Nature Mater 15, 1243–1247 (2016). https://doi.org/10.1038/nmat4743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing