Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses

Abstract

Soon after it was discovered that intense laser pulses of nanosecond duration from a ruby laser could anneal the lattice of silicon, it was established that this so-called pulsed laser annealing is a thermal process. Although the radiation energy is transferred to the electrons, the electrons transfer their energy to the lattice on the timescale of the excitation. The electrons and the lattice remain in equilibrium and the laser simply 'heats' the solid to the melting temperature within the duration of the laser pulse. For ultrashort laser pulses in the femtosecond regime, however, thermal processes (which take several picoseconds) and equilibrium thermodynamics cannot account for the experimental data. On excitation with femtosecond laser pulses, the electrons and the lattice are driven far out of equilibrium and disordering of the lattice can occur because the interatomic forces are modified due to the excitation of a large (10% or more) fraction of the valence electrons to the conduction band. This review focuses on the nature of the non-thermal transitions in semiconductors under femtosecond laser excitation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timescales of various electron and lattice processes in laser-excited solids (after ref. 10).
Figure 2: Electron and lattice excitation and relaxation processes in a laser-excited direct gap semiconductor. CB is the conduction band and VB the valence band.
Figure 3: Summary of the electronic and structural dynamics in GaAs on excitation with short laser pulses (after ref. 10).
Figure 4: Laser-induced lattice heating of crystalline GaAs at three different excitations below the threshold for irreversible changes Fth.
Figure 5: Thickness of the molten layer as function of the absorbed laser fluence.
Figure 6: Duration of the melting process as a function of the absorbed laser fluence.
Figure 7: Illustration of structural changes in the diamond structure of GaAs induced by longitudinal and transverse distortions.
Figure 8: Evolution of a diamond lattice during the first 100 fs after the excitation of a dense electron–hole plasma.

Similar content being viewed by others

References

  1. Shank, C.V. in Ultrashort Laser Pulses – Generation and Applications (ed. Kaiser, W) 5–34 (Springer, Berlin and New York, 1993).

    Google Scholar 

  2. Hirlimann, C. in Femtosecond Laser Pulses – Principles and Experiments (ed. Rullière, C.) 83–110 (Springer, Berlin, 1998).

    Google Scholar 

  3. Rose-Petruck, C. et al. J. Picosecond-milliångstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999).

    CAS  Google Scholar 

  4. van Driel, H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B. 35, 8166–8176 (1987).

    CAS  Google Scholar 

  5. Liu, P.L., Yen, R. & Bloembergen, N. Picosecond laser-induced melting and resolidification morphology on Si. Appl. Phys. Lett. 34, 864–866 (1979).

    CAS  Google Scholar 

  6. Wang, J.-K., Saeta, P., Buijs, M., Malvezzi, M. & Mazur, E. in Ultrafast Phenomena VI (eds Yajma, T., Yoshihara, K., Harris, C.B. & Shionoya, S.) 236–239 (Springer, Berlin, 1989).

    Google Scholar 

  7. Balistreri, M.L.M., Gersen, H., Korterik, J.P., Kuipers, L. & van Hulst, N.F. Tracking femtosecond laser pulses in space and time. Science 295, 1080–1082 (2001).

    Google Scholar 

  8. Stapelfeldt, H., Constant, E. & Corkum, P.B. Femtoscience: from femtoseconds to attoseconds. Prog. Cryst. Growth Charact. 33, 209–215 (1996).

    CAS  Google Scholar 

  9. Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    CAS  Google Scholar 

  10. Callan, J.P. in Ultrafast Dynamics And Phase Changes In Solids Excited By Femtosecond Laser Pulses 59–104 Thesis, Harvard Univ., Cambridge, (2000).

  11. Callan, J.P., Kim, A.M.-T., Roeser, C.A.D., Mazur, E. Ultrafast dynamics and phase changes in highly excited GaAs. Semiconduct. Semimet. 67, 151–203 (2001).

    CAS  Google Scholar 

  12. Becker, P.C. et al. Femtosecond photon echoes from band-to-band transitions in GaAs. Phys. Rev. Lett. 61, 1647–1649 (1988).

    CAS  Google Scholar 

  13. Wang, J.-K., Saeta, P., Buijs, M. & Mazur, E. in Nonlinear Optics and Ultrafast Phenomena (eds Alfano, R. R. & Rothberg, L.J.) 61–64 (Nora, New York, 1990).

    Google Scholar 

  14. Wang, J.-K., Saeta, P., Siegal, Y., Mazur, E. & Bloembergen, N. in Ultrafast Phenomena VI (eds Harris, C. B., Ippen, E. & Zewail, A.H.) 321–323 (Springer, Berlin, 1990).

    Google Scholar 

  15. Wang, J.-K. Femtosecond Nonlinear Optics In Gases And Solids Thesis, Harvard Univ., Cambridge, (1992).

  16. Shank, C.V., Yen, R. & Hirlimann, C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 50, 454–457 (1983).

    CAS  Google Scholar 

  17. Lowndes, D.H. & Jellison, G.E. Jr. in Semiconductors and Semimetals Vol. 23 (eds Wood, R.F., White, C.W. & Young, R.T.) 313–404 (Academic, Orlando, 1984).

    Google Scholar 

  18. Van Vechten, J.A., Tsu, R., Saris, F.W. & Hoonhout, D. Reasons to believe pulsed laser annealing of Si does not involve simple thermal melting. Phys. Lett. A 74, 417–421 (1979).

    Google Scholar 

  19. Corkum, P.B. Attosecond pulses at last. Nature 403, 845–846 (2000).

    CAS  Google Scholar 

  20. Paul, P.M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    CAS  Google Scholar 

  21. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    CAS  Google Scholar 

  22. Silberberg, Y. Physics at the attosecond frontier. Nature 414, 494–495 (2001).

    CAS  Google Scholar 

  23. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    CAS  Google Scholar 

  24. Papadogiannis, N.A., Witzel, B., Kalpouzos, C. & Charalambidis, D. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289–4292 (1999).

    CAS  Google Scholar 

  25. Papadogiannis, N.A. et al. Reply. Phys. Rev. Lett. 87, 109402 (2001).

  26. Symposium Q, MRS Spring Meeting, 2001. Femtosecond materials science and technology. Mater. Res. Soc. Bull. 26, 560–571 (2001).

  27. Bányai, L. et al. Exciton-KLO-phonon quantum kinetics: Evidence of memory effects in bulk GaAs. Phys. Rev. Lett. 75, 2188–2191 (1995).

    Google Scholar 

  28. Bar-Ad, S. & Chemla, D.S. Quantum kinetics regime during and immediately after laser excitation of semiconductors. Mater. Sci. Eng. B. 48, 83–87 (1997).

    Google Scholar 

  29. Zimmerman, R. in Many Particle Theory of Highly Excited Semiconductors (eds Eberling, W., Meiling, W., Uhlmann, A. & Wilhelmi, B.) 5–86 (Teubner-Texte zur Physik, Leipzig, 1988).

    Google Scholar 

  30. Kalt, H. & Rinker, M. Band-gap renormalization in semiconductors with multiple inequivalent valleys. Phys. Rev. B. 45, 1139–1154 (1992).

    CAS  Google Scholar 

  31. Glezer, E.N., Siegel, Y., Huang, L. & Mazur, E. The behavior of chi2 during laser-induced phase transitions in GaAs. Phys. Rev. B. 51, 9589–9596 (1995).

    CAS  Google Scholar 

  32. Solis, J., Afonso, C.N., Trull, J.F. & Morilla, M.C. Fast crystallizing GeSb alloys for optical data storage. J. Appl. Phys. 75, 7788–7794 (1994).

    CAS  Google Scholar 

  33. Siegal, Y., Glezer, E.N. & Mazur, E. Dielectric constant of GaAs during subpicosecond laser-induced phase transition. Phys. Rev. B 49, 16403–16406 (1994).

    CAS  Google Scholar 

  34. Siegal, Y., Glezer, E.N., Huang, L. & Mazur, E. Laser-induced phase transitions in semiconductors. Annu. Rev. Mater. Sci. 25, 223–247 (1995).

    CAS  Google Scholar 

  35. Malvezzi, A.M., Kurz, H. & Bloembergen, N. in Energy Beam-Solid Interactions and Transient Thermal Processing (eds Biegelsen, D.K., Rozgonyi, G.A. & Shank, C.V.) 75–80 (The Materials Research Society, Pittsburgh, 1985).

    Google Scholar 

  36. Downer, M.C. & Shank, C.V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett. 56, 761–764 (1986).

    CAS  Google Scholar 

  37. Malvezzi, A.M. in Excited-State Spectroscopy in Solids (eds Grassano, U.M. & Terzi, N.) 335–354 (North-Holland Physics, Amsterdam, 1987).

    Google Scholar 

  38. Preston, J.S., van Driel, H.M. & Sipe J.E. Order-disorder transitions in the melt morphology of laser-irradiated silicon. Phys. Rev. Lett. 58, 69–72 (1987).

    CAS  Google Scholar 

  39. Saeta, P., Wang, J.-K., Siegal, Y., Bloembergen, N. & Mazur, E. Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991).

    CAS  Google Scholar 

  40. Van Vechten, J.A., Tsu, R. & Saris, F.W. Nonthermal pulsed laser annealing of Si; Plasma annealing. Phys. Lett. A 74, 422–426 (1979).

    Google Scholar 

  41. von der Linde, D. in Resonances – A Volume in Honor of the 70th Birthday of Nicolaas Bloembergen (eds Levinson, M.D., Mazur, E., Pershan, P.S. & Shen, Y.R.) 337–347 (World Scientific, Singapore, 1990).

    Google Scholar 

  42. Shank, C.V., Yen, Y. & Hirlimann, C. Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900–902 (1983).

    CAS  Google Scholar 

  43. Tom, H.W.K., Heinz, T.F. & Shen, Y.R. Second-harmonic reflection from silicon surfaces and its relation to structural symmetry. Phys. Rev. Lett. 51, 1983–1986 (1983).

    CAS  Google Scholar 

  44. Tom, H.W.K., Aumiller, G.D. & Briti-Cruz, C.H. Time-resolved study of laser-induced disorder of Si surfaces. Phys. Rev. Lett. 60, 1438–1441 (1988).

    CAS  Google Scholar 

  45. Govorkov, S.V., Shumay, I.L., Rudolph, W. & Schröder, T. Time-resolved second-harmonic study of femtosecond laser-induced disordering of GaAs surfaces. Opt. Lett. 16, 1013–1015 (1991).

    CAS  Google Scholar 

  46. Govorkov, S.V., Emelyanov, V.I., Koroteev, N.I. & Shumay, I.L. Femtosecond dynamics of laser-induced phase-transition of the GaAs surface layer to a centrosymmetric phase. J. Lumin. 53, 153–158 (1992).

    CAS  Google Scholar 

  47. Govorkov, S.V., Schröder, T., Shumay, I.L. & Heist, P. Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation. Phys. Rev. B 46, 6864–6868 (1992).

    CAS  Google Scholar 

  48. Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 51, 14186–14198 (1995).

    CAS  Google Scholar 

  49. Siegal, Y., Glezer, E.N. & Mazur, E. Dielectric constant of GaAs during subpicosecond laser-induced phase transition. Phys. Rev. B 49, 16403–16406 (1994).

    CAS  Google Scholar 

  50. Glezer, E.N., Siegal, Y., Huang, L. & Mazur, E. Laser-induced bandgap collapse in GaAs. Phys. Rev. B 51, 6959–6970 (1995).

    CAS  Google Scholar 

  51. Glezer, E.N., Huang, L., Siegal, Y., Callan, J.P. & Mazur, E. in Proc. Mater. Res. Soc. Symp. Vol. 397 (Eds Singh, R., Norton, D., Laude, L., Narayan, J. & Cheung, J.) 3–20 (The Materials Research Society, Pittsburgh, 1995).

    Google Scholar 

  52. Glezer, E.N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

    CAS  Google Scholar 

  53. Huang, L., Callan, J.P., Glezer, E.N. & Mazur, E. GaAs under ultrafast excitation: response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).

    CAS  Google Scholar 

  54. Callan, J.P., Kim, A.M.–T., Huang, L. & Mazur, E. Ultrafast electron and lattice dynamics in semiconductors at high excited carrier dynamics. Chem. Phys. 251, 167–179 (2000).

    CAS  Google Scholar 

  55. Callan, J.P., Kim, A.M.-T., Roeser, C.A.D. & Mazur, E. Universal dynamics during and after ultrafast laser-induced semiconductor-to-metal transitions. Phys. Rev. B 64, 073201–073204 (2001).

    Google Scholar 

  56. Blakemore, J.S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982).

    CAS  Google Scholar 

  57. Erman, M., Theeten, J.B., Chambon, P., Kelso, S.M. & Aspnes, D.E. Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation. J. Appl. Phys. 56, 2664–2671 (1984).

    CAS  Google Scholar 

  58. Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs. Appl. Phys. A 53, 227–234 (1991).

    Google Scholar 

  59. von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109/110, 1–10 (1997).

    CAS  Google Scholar 

  60. Sokolowski-Tinten, K., Bialkowski, J., Boing, M., Cavalleri, A. & von der Linde, D. Thermal and non-thermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B. 58, R11805–R11808 (1998).

    CAS  Google Scholar 

  61. Siders, C.W. et al. Detection of non-thermal melting by ultrasfast X-ray diffraction. Science 286, 1340–1342 (1999).

    CAS  Google Scholar 

  62. Schoenlein, R.W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996).

    CAS  Google Scholar 

  63. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    CAS  Google Scholar 

  64. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys. Rev. Lett. 87, 225701 (2001).

  65. Shumay, I.L. & Höfer, U. Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Phys. Rev. B 53, 15878–15884 (1996).

    CAS  Google Scholar 

  66. Chin, A.H. et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction. Phys. Rev. Lett. 83, 336–339 (1999).

    CAS  Google Scholar 

  67. Lindenberg, A.M. et al. Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84, 111–114 (2000).

    CAS  Google Scholar 

  68. Rousse, A. et al. Nonthermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68 (2001).

    CAS  Google Scholar 

  69. Vetelino, J.F. & Gaur, S.P. & Mitra, S, S. Debye-Waller factor for zinc-blende-type crystals. Phys. Rev. B 5, 2360–2366 (1972).

    Google Scholar 

  70. Crain, J. et al. Theoretical study of high-density phases of covalent semiconductors. I. Ab initio treatment. Phys. Rev. B 49, 5329–5340 (1994).

    CAS  Google Scholar 

  71. Clark, S.J., Ackland, G.J. & Crain, J. Theoretical study of high-density phases of covalent semiconductors. II. Empirical treatment. Phys. Rev. B 49, 5341–5352 (1994).

    CAS  Google Scholar 

  72. Stampfli, P. & Bennemann, K.H. Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron–hole plasma. Phys. Rev. B 42, 7163–7173 (1990).

    CAS  Google Scholar 

  73. Stampfli, P. & Bennemann, K.H. Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B 46, 10686–10692 (1992).

    CAS  Google Scholar 

  74. Stampfli, P. & Bennemann, K.H. Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions. Phys. Rev. B 49, 7299–7305 (1994).

    CAS  Google Scholar 

  75. Martin, R.M. Dielectric screening model for lattice vibrations of diamond-structure crystals. Phys. Rev. 186, 871 (1969).

  76. Heine, V. & Van Vechten, J.A. Effect of electron–hole pairs on phonon frequencies in Si related to temperature dependence of bandgaps. Phys. Rev. B 13, 1622–1626 (1976).

    CAS  Google Scholar 

  77. Benedict, L.X. Dielectric function for model of laser-excited GaAs. Phys. Rev. B 63, 075202 (2001).

  78. Stampfli, P. & Bennemann, K.H. Theory for the laser-induced femtosecond phase transition of silicon and GaAs. Appl. Phys. A 60, 191–196 (1995).

    Google Scholar 

  79. Silvestrelli, P.L., Alavi, A., Parrinello, M. & Frenkel, D. Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996).

    CAS  Google Scholar 

  80. Graves, J.S. & Allen, R.E. Response of GaAs to fast intense laser pulse. Phys. Rev. B 58, 13627–13633 (1999).

    Google Scholar 

Download references

Acknowledgements

Collaboration between the authors was made possible with support from the Department of Energy under the Environmental Management Science Program. We thank C. A. D. Roeser for a careful review of the manuscript and many helpful comments. S.K.S. acknowledges the support from the Pacific Northwest National Laboratory (PNNL) while writing this review. Battelle Memorial Institute operates PNNL for the United States Department of Energy under Contract DE-AC06-76RLO 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sundaram.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, S., Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater 1, 217–224 (2002). https://doi.org/10.1038/nmat767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing