Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-κ dielectrics for advanced carbon-nanotube transistors and logic gates

Abstract

The integration of materials having a high dielectric constant (high-κ) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-κ (25) zirconium oxide thin-films (8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S m−1 (12 μS per tube) and 3,000 cm2 V−1 s−1 respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrating high-κ dielectrics into molecular transistors.
Figure 2: Characteristics of a p-type SWNT-FET with high-κ gate insulator.
Figure 3: Characteristics of an n-type SWNT-FET with high-κ gate insulator.
Figure 4: Logic gates built from nanotube transistors with high-κ dielectrics.

Similar content being viewed by others

References

  1. Wilk, G.D., Wallace, R.M. & Anthony, J.M. High k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  2. Harrop, P.J. & Campell, D.S. Selection of thin film capacitor dielectrics. Thin Solid Films 2, 273–292 (1968).

    Article  CAS  Google Scholar 

  3. Perkins, C.M., Triplett, B.B., McIntyre, P.C., Saraswat, K.C. & Shero, E. Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics. Appl. Phys. Lett. 81, 1417–1419 (2002).

    Article  CAS  Google Scholar 

  4. Alternative gate dielectrics for microelectronics. Mater. Res. Bull. 27 (Special issue, March 2002).

  5. Dresselhaus, M.S., Dresselhaus, G. & Avouris, P. (eds.) Carbon Nanotubes (Springer, Berlin, 2001).

    Book  Google Scholar 

  6. Zhou, C., Kong, J. & Dai, H. Electrical measurements of individual semiconducting single-walled nanotubes of various diameters. Appl. Phys. Lett. 76, 1597–1599 (2000).

    Article  CAS  Google Scholar 

  7. Shim, M., Javey, A., Kam, N.W.S. & Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).

    Article  CAS  Google Scholar 

  8. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–915 (2002).

    Article  CAS  Google Scholar 

  9. Franklin, N.R. et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett. 81, 913–915 (2002).

    Article  CAS  Google Scholar 

  10. Fuhrer, M.S., Kim, B.M., Dürkop, T. & Brintlinger, T. High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002).

    Article  CAS  Google Scholar 

  11. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  CAS  Google Scholar 

  12. Liang, W. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  CAS  Google Scholar 

  13. Kong, J. et al. Quantum interference and ballistic transmission in nanotube electron wave-guides. Phys. Rev. Lett. 87, 106801 (2001).

    Article  CAS  Google Scholar 

  14. Tans, S., Verschueren, A. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  15. Martel, R., Schmidt, T., Shea, H.R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    Article  CAS  Google Scholar 

  16. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  CAS  Google Scholar 

  17. Wind, S., Appenzeller, J., Martel, R., Derycke, V. & Avouris, P. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80, 3817–3819 (2002).

    Article  CAS  Google Scholar 

  18. Javey, A., Wang, Q., Ural, A., Li, Y. & Dai, H. Carbon nanotube transistor arrays for multi-stage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).

    Article  CAS  Google Scholar 

  19. Leskela, M. & Ritala, M. Atomic layer deposition: from precursors to thin film structures. Thin Solid Films 409, 138–146 (2002).

    Article  CAS  Google Scholar 

  20. Kong, J., Soh, H., Cassell, A., Quate, C.F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  CAS  Google Scholar 

  21. Sze, S.M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  22. Muller, R.S. & Kamins, T.I. Device Electronics for Integrated Circuits (Wiley, New York, 1986).

    Google Scholar 

  23. Guo, J. & Lundstrom, M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. IEDM Tech. Dig. (submitted).

  24. Guo, J., Goasguen, S., Lundstrom, M. & Datta, S. Metal-insulator-semiconductor electrostatics of carbon nanotubes. Appl. Phys. Lett. 81, 1486–1488 (2002).

    Article  CAS  Google Scholar 

  25. Martel, R., Wong, H.S.P., Chan, K. & Avouris, P. Carbon nanotube field effect transistors for logic applications. IEDM Tech. Dig. 159–162 (2001).

  26. Thompson, S. et al. An enhanced 130 nm generation logic technology featuring 60 nm transistors optimized for high performance and low power at 0.7–1.4 C. IEDM Tech. Dig. 256–269, (2001).

  27. Assad, F., Ren, Z., Vasileska, D., Datta, S. & Lundstrom, M. On the performance limits for Si MOSFET's: A theoretical study. IEEE Trans. Electron. Dev. 47, 232–240 (2000).

    Article  CAS  Google Scholar 

  28. Ramo, S., Whinnery, J.R. & Duzer, T.V. Fields and Waves in Communication Electronics (Wiley, New York, 1994).

    Google Scholar 

  29. Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).

    Article  CAS  Google Scholar 

  30. Freitag, M., Radosavljevic, M., Zhou, Y., Johnson, A.T. & Smith, W.F. Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326–3328 (2001).

    Article  CAS  Google Scholar 

  31. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett. 80, 2773–2775 (2002).

    Article  CAS  Google Scholar 

  32. Green, M.L. et al. Understanding the limits of ultrathin SiO2 and Si-O-N gate dielectrics for sub-50 nm CMOS. Microelectron. Eng. 48, 25–30 (1999).

    Article  CAS  Google Scholar 

  33. Kong, J., Zhou, C., Yenilmez, E. & Dai, H. Alkaline metal doped n-type semiconducting nanotubes as quantum dots. Appl. Phys. Lett. 77, 3977–3979 (2000).

    Article  CAS  Google Scholar 

  34. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano. Lett. 1, 453–456 (2001).

    Article  CAS  Google Scholar 

  35. Radosavljevic, M., Freitag, M., Thadani, K.V. & Johnson, A.T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett. 2, 761–764 (2002).

    Article  CAS  Google Scholar 

  36. Collins, P.G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  37. Jhi, S.-H., Louie, S.G. & Cohen, M.L. Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85, 1710–1713 (2000).

    Article  CAS  Google Scholar 

  38. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. 105, 11424–11431 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Antoniadis, B. Triplett and C. Quate for critical comments, and A. Marshall for TEM assistance. This work was supported by MARCO Focused Research Center on Materials, Structures and Devices, Defense Advanced Research Projects/Moletronics, ABB Group Ltd., the Lucille Packard Foundation, the Alfred Sloan Foundation, a Dreyfus Teacher-Scholar Award, a Mayfield Stanford Graduate Fellowship and the National Science Foundation (NSF) Center for Nanoscale Systems. Part of the fabrication was performed at the Cornell Nanofabrication Facility, a node of the National Nanofabrication users Network, funded by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javey, A., Kim, H., Brink, M. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater 1, 241–246 (2002). https://doi.org/10.1038/nmat769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing