Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends

Abstract

Blends of conjugated polymers are frequently used as the active semiconducting layer in light-emitting diodes and photovoltaic devices. Here we report the use of scanning near-field optical microscopy, scanning force microscopy and nuclear-reaction analysis to study the structure of a thin film of a phase-separated blend of two conjugated polymers prepared by spin-casting. We show that in addition to the well-known micrometre-scale phase-separated morphology of the blend, one of the polymers preferentially wets the surface and forms a 10-nm-thick, partially crystallized wetting layer. Using near-field microscopy we identify unexpected changes in the fluorescence emission from the blend that occurs in a 300-nm-wide band located at the interface between the different phase-separated domains. Our measurements provide an insight into the complex structure of phase-separated conjugated-polymer thin films. Characterizing and controlling the properties of the interfaces in such films will be critical in the further development of efficient optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The absorption and fluorescence of PFO, F8BT and a (1:1) blend of PFO and F8BT.
Figure 2: Scanning near-field optical micrographs of the transmission and fluorescence from a PFO/F8BT blend.
Figure 3: Fluorescence and topography cross-sections across an interface in a PFO/F8BT polymer blend.
Figure 4: The d-PFO volume fraction (φPFO) depth profile of a 70-nm-thick film of a 1:1 d-PFO/F8BT blend as determined by nuclear-reaction analysis.
Figure 5: The structure of a PFO-rich domain as measured using a scanning force microscope.

Similar content being viewed by others

References

  1. Friend, R.H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Google Scholar 

  2. Bernius, M.T., Inbasekaran, M., O'Brien, J. & Wu, W. Progress with light-emitting polymers. Adv. Mater. 12, 1737–1750 (2000).

    Article  CAS  Google Scholar 

  3. Wilkinson, C.I. et al. Enhanced performance of pulse driven small area polyfluorene light emitting diodes. Appl. Phys. Lett. 79, 171–173 (2001).

    Article  CAS  Google Scholar 

  4. Morgado, J., Friend, R.H. & Cacialli, F. Improved efficiency of light-emitting diodes based on polyfluorene blends upon insertion of a poly(p-phenylene vinylene) electron-confinement layer. Appl. Phys. Lett. 80, 2436–2438 (2002).

    Article  CAS  Google Scholar 

  5. Halls, J.J.M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  6. van Hutten, P.F., Krasnikov, V.V. & Hadziioannou, G. in Conjugated Polymer and Molecular Interfaces (eds Salaneck, W., Seki, K., Kahn, A. & Pireaux, J.J.) 113–142 (Marcel Dekker, New York, 2001).

    Google Scholar 

  7. Chen, L. et al. Excitation transfer in polymer photodiodes for enhanced quantum efficiency. Adv. Mater. 12, 1110–1114 (2000).

    Article  CAS  Google Scholar 

  8. Arias, A.C. et al. Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl. Phys. Lett. 80, 1695–1697 (2002).

    Article  CAS  Google Scholar 

  9. Campbell, A.J. et al. in Proceedings of SPIE 2002 4464 (ed. Kafafi Z.H.) 211–222 (SPIE, Washington, 2002).

    Google Scholar 

  10. Geoghegan, M. & Krausch, G. Wetting at polymer surfaces and interfaces. Prog. Polym. Sci. 28, 261–302 (2003).

    Article  CAS  Google Scholar 

  11. Halls, J.J.M. et al. Photodiodes based on polyfluorene composites: influence of morphology. Adv. Mater. 12, 498–502 (2000).

    Article  CAS  Google Scholar 

  12. Halls, J.J.M., Pichler, K., Friend, R.H., Moratti, S.C. & Holmes, A.B. Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120–3122 (1996).

    Article  CAS  Google Scholar 

  13. Stoessel, M. et al. Cathode-induced luminescence quenching in polyfluorene. J. Appl. Phys. 87, 4467–445 (2000).

    Article  CAS  Google Scholar 

  14. Snaith, H.J., Arias, A.C., Morteani, A.C., Silva, C. & Friend, R.H. Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett. 2, 1353–1357 (2002).

    Article  CAS  Google Scholar 

  15. Moons, E. Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J. Phys. Condens. Matter 14, 12235–12260 (2002).

    Article  CAS  Google Scholar 

  16. Corcoran, N., Arias, A.C., Kim, J.S., MacKenzie, J.D. & Friend, R.H. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting-diodes. Appl. Phys. Lett. 82, 299–301 (2003).

    Article  CAS  Google Scholar 

  17. Ariu, M. et al. The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9,9-dioctylfluorene). J. Phys. Condens. Matter 14, 9975–9986 (2002).

    Article  CAS  Google Scholar 

  18. Redecker, M., Bradley, D.D.C., Inbasekaran, M. & Woo, E.P. Nondispersive hole transport in an electroluminescent polyfluorene. Appl. Phys. Lett. 73, 1565–1567 (1998).

    Article  CAS  Google Scholar 

  19. Herguth, P., Jiang, X., Liu, M.S. & Jen, A.K.Y. Highly efficient fluorene- and benzothiadiazole-based conjugated copolymers for polymer light-emitting diodes. Macromolecules 35 6094–6100 (2002).

    Article  CAS  Google Scholar 

  20. Campbell, A.J., Bradley, D.D.C. & Antoniadis, H. Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method. Appl. Phys. Lett. 79, 2133–2135 (2001).

    Article  CAS  Google Scholar 

  21. Buckley, A.R. et al. Energy transfer dynamics in polyfluorene-based polymer blends. Chem. Phys. Lett. 339 331–336 (2001).

    Article  CAS  Google Scholar 

  22. Wei, P.K., Hsu, J.H. & Fann, W.S. Study of conjugated polymer blend films by a near field scanning optical microscopy. Synth. Met. 102, 1209–1210 (1999).

    Article  CAS  Google Scholar 

  23. DeAro, J.A., Weston, K.D., Buratto, S.K. & Lemmer, U. Mesoscale optical properties of conjugated polymers probed by near-field scanning optical microscopy. Chem. Phys. Lett. 277, 532–538 (1997).

    Article  CAS  Google Scholar 

  24. Chappell, J. & Lidzey, D.G. Phase-separation in polyfluorene-polymethylmethacrylate blends studied using UV near-field microscopy. J. Microsc. 209, 188–193 (2003).

    Article  CAS  Google Scholar 

  25. Webster, S., Smith, D.A., Batchelder, D.N., Lidzey, D.G. & Bradley, D.D.C. Application of fluorescence scanning near-field optical microscopy to the study of phase-separated conjugated polymers. Ultramicroscopy 71, 275–279 (1998).

    Article  CAS  Google Scholar 

  26. Stevenson, R., Granström, M. & Richards, D. Fluorescence scanning near-field optical microscopy of conjugated polymer blends. Appl. Phys. Lett. 75, 1574–1576 (1999).

    Article  CAS  Google Scholar 

  27. Stevenson, R. et al. Ultraviolet-visible near-field microscopy of phase-separated blends of polyfluorene-based conjugated semiconductors. Appl. Phys. Lett. 79, 833–835 (2001).

    Article  CAS  Google Scholar 

  28. Stevenson, R. et al. Fluorescence scanning near-field optical microscopy of polyfluorene composites. J. Microsc. 202, 433–438 (2001).

    Article  CAS  Google Scholar 

  29. Morgado, J., Moons, E., Friend, R.H. & Cacialli, F. De-mixing of polyfluorene-based blends by contact with acetone: electro- and photo-luminescent probes. Adv. Mater. 13, 810–814 (2001).

    Article  CAS  Google Scholar 

  30. Hecht, B., Bielefeldt, H., Inouye, Y., Pohl, D.W. & Novotny, L. Facts and artefacts in near-field optical microscopy. J. Appl. Phys. 81, 2492–2498 (1997).

    Article  CAS  Google Scholar 

  31. Payne, R.S., Clough, A.S., Murphy, P. & Mills, P.J. Use of the d(3He, p)4He reaction to study polymer diffusion in polymer melts Nucl. Instrum. Meth. B 42, 130–134 (1989).

    Article  Google Scholar 

  32. Geoghegan, M. in Polymer Surfaces and Interfaces III (eds Richards, R.W. & Peace, S.K.) 43–73 (Wiley, Chichester, 1999).

    Google Scholar 

  33. Grell, M., Bradley, D.D.C., Inbasekaran, M. & Woo, E.P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 9, 798–803 (1997).

    Article  CAS  Google Scholar 

  34. Grimsdale, A.C. et al. Correlation between molecular structure, microscopic morphology and optical properties of poly(tetraalkylindenofluorene)s. Adv. Funct. Mater. 12, 729–733 (2002).

    Article  CAS  Google Scholar 

  35. Ariu, M. et al. A study of the different structural phases of the polymer poly(9,9-dioctylfluorene) using Raman spectroscopy. Synth. Met. 116, 217–221 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the UK Engineering and Physical Sciences Research Council for support of this research through grants GR/R26658/01 and GR/R10479/01 and for the provision of funding for D.G.L. and J.C. We also thank Franco Cacialli and Simon Martin for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Lidzey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, J., Lidzey, D., Jukes, P. et al. Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nature Mater 2, 616–621 (2003). https://doi.org/10.1038/nmat959

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing