Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-processed ambipolar organic field-effect transistors and inverters

A Corrigendum to this article was published on 01 December 2003

Abstract

There is ample evidence that organic field-effect transistors have reached a stage where they can be industrialized, analogous to standard metal oxide semiconductor (MOS) transistors. Monocrystalline silicon technology is largely based on complementary MOS (CMOS) structures that use both n-type and p-type transistor channels. This complementary technology has enabled the construction of digital circuits, which operate with a high robustness, low power dissipation and a good noise margin. For the design of efficient organic integrated circuits, there is an urgent need for complementary technology, where both n-type and p-type transistor operation is realized in a single layer, while maintaining the attractiveness of easy solution processing. We demonstrate, by using solution-processed field-effect transistors, that hole transport and electron transport are both generic properties of organic semiconductors. This ambipolar transport is observed in polymers based on interpenetrating networks as well as in narrow bandgap organic semiconductors. We combine the organic ambipolar transistors into functional CMOS-like inverters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Device band diagram of interpenetrating networks of OC1C10-PPV and PCBM in contact with Au electrodes, when no biases are applied to the transistor.
Figure 3: The output characteristics of the blend transistor as well as the output characteristics of the PIF transistor demonstrate ambipolar operation.
Figure 4: Transfer characteristics of a precursor pentacene field-effect transistor with gold electrodes, demonstrating electron currents at high gate voltages.
Figure 5: Transfer characteristics of CMOS-like inverters based on two identical ambipolar transistors.

Similar content being viewed by others

References

  1. Burroughes, J.H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  2. Yu, G., Gao, J., Hummelen, J.C., Wudl, F. & Heeger, A.J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  3. Dimitrakopoulos, C.D. & Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  4. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    Article  CAS  Google Scholar 

  5. Dodabalapur, A., Katz, H.E., Torsi, L. & Haddon, R.C. Organic heterostructure field-effect transistors. Science 296, 1560–1562 (1995).

    Article  Google Scholar 

  6. Dodabalapur, A., Katz, H.E., Torsi, L. & Haddon, R.C. Organic field-effect bipolar transistors. Appl. Phys. Lett. 68, 1108–1110 (1996).

    Article  CAS  Google Scholar 

  7. Huitema, H.E.A. et al. Plastic transistor in active-matrix displays. Nature 414, 599 (2001).

  8. Sirringhaus, H., Tessler, N. & Friend, R.H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  CAS  Google Scholar 

  9. Gelinck, G.H., Geuns, T.C.T. & de Leeuw, D.M. High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487–1489 (2000).

    Article  CAS  Google Scholar 

  10. Tada, K., Harada, H. & Yoshino, K. Polymeric bipolar thin-film transistor utilizing conducting polymer containing electron transport dye. Jpn J. Appl. Phys. 35 L944–L946 (1996).

    Article  CAS  Google Scholar 

  11. Blom, P.W.M., de Jong, M.J.M. & van Munster, M.G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Rev. B. 55, R656–R659 (1997).

    Article  CAS  Google Scholar 

  12. Veenstra, S.C., Heeres, A., Hadziioannou, G., Sawatzky, G.A. & Jonkman, H.T. On interface dipole layers between C60 and Ag or Au. Appl. Phys. A, 75, 661–666 (2002).

    Article  CAS  Google Scholar 

  13. Sze, S.M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  14. Reisch, H., Wiesler, W., Scherf, U. & Tuytuylkov, N. Poly(indenofluorene) (PIF), a novel low band gap polyhydrocarbon. Macromolecules 29, 8204–8210 (1996).

    Article  CAS  Google Scholar 

  15. Neudeck, G.W., Bare, H.F. & Chung, K.Y. Modelling of ambipolar a-Si:H thin-film transistors. IEEE Trans. Electron Dev. 34, 344–350 (1987).

    Article  Google Scholar 

  16. Meijer, E.J. et al. Switch-on voltage in disordered organic field-effect transistors. Appl. Phys. Lett. 80, 3838–3840 (2002).

    Article  CAS  Google Scholar 

  17. Vissenberg, M.C.J.M. & Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964–12967 (1998).

    Article  CAS  Google Scholar 

  18. Detcheverry, C. & Matters, M. Device simulation of all-polymer thin-film transistors. Proc. ESSDERC 328–331 (2000).

  19. van Woudenbergh, T., Blom, P.W.M., Vissenberg, M.C.J.M. & Huiberts, J.N. Temperature dependence of the charge injection in poly-dialkoxy-p-phenylene vinylene. Appl. Phys. Lett. 79, 1697–1699 (2001).

    Article  CAS  Google Scholar 

  20. Chung, K.Y., Neudeck, G.W. & Bare, H.F. Analytical modelling of the CMOS-like a-Si:H TFT inverter circuit. IEEE J. Solid-State Circ. 23, 566–572 (1988).

    Article  Google Scholar 

  21. Meijer, E.J. et al. Dopant density determination in disordered organic field-effect transistors. J. Appl. Phys. 93, 4831–4835 (2003).

    Article  CAS  Google Scholar 

  22. Herwig, P.T. & Müllen, K. A soluble pentacene precursor: synthesis, solid-state conversion into pentacene and application in a field-effect transistor. Adv. Mater. 11, 480–483 (1999).

    Article  CAS  Google Scholar 

  23. Brown, A.R., Jarrett, C.P., de Leeuw, D.M. & Matters, M. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37–55 (1997).

    Article  CAS  Google Scholar 

  24. Cormier, R.A. & Gregg, B.A. Synthesis and characterization of liquid crystalline perylene diimides. Chem. Mater. 10, 1309–1319 (1998).

    Article  CAS  Google Scholar 

  25. de Leeuw, D.M., Simenon, M.M.J., Brown, A.R. & Einerhand, R.E.F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Article  CAS  Google Scholar 

  26. Shaheen, S.E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Brian Gregg (National Renewable Energy Laboratory, Golden, Colerado, USA) for providing a sample of PPEEB, Jitendra Jadam for the synthesis of the PIF, Eugenio Cantatore (Philips Research) for useful discussions, Henny Herps (Philips Research) for the design of Fig. 1, and also gratefully acknowledge The Dutch science foundation NWO/FOM through the 'Laboratorium zonder muren' project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. de Leeuw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijer, E., de Leeuw, D., Setayesh, S. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater 2, 678–682 (2003). https://doi.org/10.1038/nmat978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing