Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated analysis of receptor activation and downstream signaling with EXTassays

Abstract

The ability to measure multiple cellular signaling events is essential to better understand the underlying complex biological processes that occur in living cells. Microarray-based technologies are now commonly used to study changes in transcription. This information, however, is not sufficient to understand the regulatory mechanisms that lead to gene expression changes. Here we present an approach to monitor signaling events upstream of gene expression. We coupled different reporter gene assays to unique expressed oligonucleotide tags (EXTs) that serve as identifiers and quantitative reporters. Multiple EXT reporters can be isolated as a pool and analyzed by hybridization to microarrays. To test the feasibility of our approach, we integrated complementation assays based on a protease from tobacco etch virus (TEV protease) and transcription factor activity profiling. Thereby, we simultaneously monitored Neuregulin-dependent mouse ErbB receptor tyrosine kinase dimerization, effector recruitment and downstream signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Barcoding of multiple cellular assays with EXT reporter assays.
Figure 2: Structure and synthesis of EXTs.
Figure 3: EXT mismatch-discrimination profiles.
Figure 4: EXTassay performance under control conditions.
Figure 5: Integrated NRG-ErbB signaling with EXTassays.
Figure 6: Improved kinetic performance and sensitivity of EXT reporters compared to standard luciferase assays.

Similar content being viewed by others

References

  1. Papin, J.A., Hunter, T., Palsson, B.O. & Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6, 99–111 (2005).

    Article  CAS  Google Scholar 

  2. Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  Google Scholar 

  3. Mei, L. & Xiong, W.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9, 437–452 (2008).

    Article  CAS  Google Scholar 

  4. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  Google Scholar 

  5. Schulze, W.X., Deng, L. & Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1, 0008 (2005).

    Article  Google Scholar 

  6. Krutzik, P.O. & Nolan, G.P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 3, 361–368 (2006).

    Article  CAS  Google Scholar 

  7. Glory, E. & Murphy, R.F. Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12, 7–16 (2007).

    Article  CAS  Google Scholar 

  8. MacDonald, M.L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  9. Wu, R.Z., Bailey, S.N. & Sabatini, D.M. Cell-biological applications of transfected-cell microarrays. Trends Cell Biol. 12, 485–488 (2002).

    Article  CAS  Google Scholar 

  10. Wehr, M.C. et al. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3, 985–993 (2006).

    Article  CAS  Google Scholar 

  11. Wehr, M.C., Reinecke, L., Botvinnik, A. & Rossner, M.J. Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV. BMC Biotechnol. 8, 55 (2008).

    Article  Google Scholar 

  12. Bulyk, M.L. DNA microarray technologies for measuring protein-DNA interactions. Curr. Opin. Biotechnol. 17, 422–430 (2006).

    Article  CAS  Google Scholar 

  13. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  14. Romanov, S. et al. Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat. Methods 5, 253–260 (2008).

    Article  CAS  Google Scholar 

  15. Brenner, S. et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc. Natl. Acad. Sci. USA 97, 1665–1670 (2000).

    Article  CAS  Google Scholar 

  16. Vaskovsky, A., Lupowitz, Z., Erlich, S. & Pinkas-Kramarski, R. ErbB-4 activation promotes neurite outgrowth in PC12 cells. J. Neurochem. 74, 979–987 (2000).

    Article  CAS  Google Scholar 

  17. Di Fiore, P.P. et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237, 178–182 (1987).

    Article  CAS  Google Scholar 

  18. Xu, Q., Schlabach, M.R., Hannon, G.J. & Elledge, S.J. Design of 240,000 orthogonal 25mer DNA barcode probes. Proc. Natl. Acad. Sci. USA 106, 2289–2294 (2009).

    Article  CAS  Google Scholar 

  19. Mazurkiewicz, P., Tang, C.M., Boone, C. & Holden, D.W. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nat. Rev. Genet. 7, 929–939 (2006).

    Article  CAS  Google Scholar 

  20. Kovacs, D.M. & Kaplan, B.B. Discordant estimates of heterologous promoter activity as determined by reporter gene mRNA levels and enzyme activity. Biochem. Biophys. Res. Commun. 189, 912–918 (1992).

    Article  CAS  Google Scholar 

  21. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  22. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-hybrid system. Genome Res. 14, 2093–2101 (2004).

    Article  CAS  Google Scholar 

  23. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  24. Kanno, A., Ozawa, T. & Umezawa, Y. Intein-mediated reporter gene assay for detecting protein-protein interactions in living mammalian cells. Anal. Chem. 78, 556–560 (2006).

    Article  CAS  Google Scholar 

  25. Stagljar, I., Korostensky, C., Johnsson, N. & te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. USA 95, 5187–5192 (1998).

    Article  CAS  Google Scholar 

  26. Eyckerman, S. et al. Design and use of a mammalian protein-protein interaction trap (MAPPIT). Sci. STKE 2002, pl18 (2002).

    PubMed  Google Scholar 

  27. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA 105, 64–69 (2008).

    Article  CAS  Google Scholar 

  28. Nomenclature committee of the International Union of Biochemistry (NC-IUB). Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. J. Biol. Chem. 261, 13–17 (1986).

  29. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  Google Scholar 

  30. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  31. Rossner, M.J. et al. Global transcriptome analysis of genetically identified neurons in the adult cortex. J. Neurosci. 26, 9956–9966 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of F. Benseler and all members of the Sequencing Core Facility (Max Planck Institute of Experimental Medicine, Götttingen) for the EXT synthesis and excellent services, and the expert support by staff of the Microarray Core Lab of the University of Göttingen, namely R. Hitt, G. Salinas-Riester and L. Opitz. We thank R. Reinhardt, S. Klages and S. Scheer for high-throughput sequencing and primary data analysis, K.-A. Nave for support, F. Melchior, E. Wimmer, as well as all lab members for stimulating discussions, and M. Wehr for critically reading the manuscript and providing valuable feedback. This study was supported by grants of the Bundesministerium für Bildung und Forschung (FKZ0315180A) and partially by the European Union (LSHM-CT-2005-018637) to M.J.R.

Author information

Authors and Affiliations

Authors

Contributions

A.B. cloned EXT constructs, performed the assays, analyzed the data, contributed conceptually and wrote the manuscript. S.P.W. performed bioinformatic calculations and analyzed the data. T.M.F. cloned expression constructs. M.J.R. conceived the study, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Moritz J Rossner.

Ethics declarations

Competing interests

M.J.R. filed a patent application covering the principles of EXTassays.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–5, Supplementary Note 1 and Supplementary Discussion (PDF 3237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botvinnik, A., Wichert, S., Fischer, T. et al. Integrated analysis of receptor activation and downstream signaling with EXTassays. Nat Methods 7, 74–80 (2010). https://doi.org/10.1038/nmeth.1407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing