Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes

Abstract

NKX2-5 is expressed in the heart throughout life. We targeted eGFP sequences to the NKX2-5 locus of human embryonic stem cells (hESCs); NKX2-5eGFP/w hESCs facilitate quantification of cardiac differentiation, purification of hESC-derived committed cardiac progenitor cells (hESC-CPCs) and cardiomyocytes (hESC-CMs) and the standardization of differentiation protocols. We used NKX2-5 eGFP+ cells to identify VCAM1 and SIRPA as cell-surface markers expressed in cardiac lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of cardiomyocytes generated from NKX2-5eGFP/w hESCs.
Figure 2: NKX2-5eGFP/w hESCs facilitate real-time monitoring of cardiac differentiation.
Figure 3: Expression profiling of NKX2-5 eGFP+ cells identifies cardiac cell-surface markers.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

References

  1. Yao, S. et al. Proc. Natl. Acad. Sci. USA 103, 6907–6912 (2006).

    Article  CAS  Google Scholar 

  2. Tomescot, A. et al. Stem Cells 133, 2200–2205 (2007).

    Article  Google Scholar 

  3. Paige, S.L. et al. PLoS ONE 5, e11134 (2010).

    Article  Google Scholar 

  4. Dambrot, C., Passier, R., Atsma, D. & Mummery, C.L. Biochem. J. 434, 25–35 (2011).

    Article  CAS  Google Scholar 

  5. Christoforou, N. et al. J. Clin. Invest. 118, 894–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Satin, J. et al. Stem Cells 26, 1961–1972 (2008).

    Article  CAS  Google Scholar 

  7. Sedan, O. et al. Stem Cells 26, 3130–3138 (2008).

    Article  CAS  Google Scholar 

  8. Kehat, I. et al. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  Google Scholar 

  9. Dick, E., Rajamohan, D., Ronksley, J. & Denning, C. Biochem. Soc. Trans. 38, 1037–1045 (2010).

    Article  CAS  Google Scholar 

  10. Yang, L. et al. Nature 453, 524–528 (2008).

    Article  CAS  Google Scholar 

  11. Bu, L. et al. Nature 460, 113–117 (2009).

    Article  CAS  Google Scholar 

  12. Laflamme, M.A. et al. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  13. Hattori, F. et al. Nat. Methods 7, 61–66 (2010).

    Article  CAS  Google Scholar 

  14. Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I. & Harvey, R.P. Development 119, 419–431 (1993).

    CAS  PubMed  Google Scholar 

  15. Kwee, L. et al. Development 121, 489–503 (1995).

    CAS  PubMed  Google Scholar 

  16. Dubois, N.C. et al. Nat. Biotechnol. (in the press).

  17. Osoegawa, K. et al. Genome Res. 11, 483–496 (2001).

    Article  CAS  Google Scholar 

  18. Costa, M. et al. Nat. Protoc. 2, 792–796 (2007).

    Article  CAS  Google Scholar 

  19. Davis, R.P. et al. Nat. Protoc. 3, 1550–1558 (2008).

    Article  CAS  Google Scholar 

  20. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  21. Ng, E.S., Davis, R., Stanley, E.G. & Elefanty, A.G. Nat. Protoc. 3, 768–776 (2008).

    Article  CAS  Google Scholar 

  22. Ng, E.S., Davis, R.P., Azzola, L., Stanley, E.G. & Elefanty, A.G. Blood 106, 1601–1603 (2005).

    Article  CAS  Google Scholar 

  23. Burridge, P.W. et al. Stem Cells 25, 929–938 (2007).

    Article  CAS  Google Scholar 

  24. Pick, M., Azzola, L., Mossman, A., Stanley, E.G. & Elefanty, A.G. Stem Cells 25, 2206–2214 (2007).

    Article  CAS  Google Scholar 

  25. Davis, R.P. et al. Blood 111, 1876–1884 (2008).

    Article  CAS  Google Scholar 

  26. Goulburn, A.L. et al. Stem Cells 29, 462–473 (2011).

    Article  CAS  Google Scholar 

  27. Mummery, C. et al. Circulation 107, 2733–2740 (2003).

    Article  CAS  Google Scholar 

  28. Passier, R. et al. Stem Cells 23, 772–780 (2005).

    Article  CAS  Google Scholar 

  29. Prall, O.W. et al. Cell 128, 947–959 (2007).

    Article  CAS  Google Scholar 

  30. Graichen, R. et al. Differentiation 76, 357–370 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Stem Cell Centre (to E.G.S., A.G.E., D.A.E., D.M.K., J.M.H. and C.W.P.), the National Health and Medical Research Council of Australia (D.A.E., grant 606586; O.W.J.P., grant 573707), National Heart Foundation (Australia) (E.G.S. and A.G.E., grant G 08M 3711; O.W.J.P., Career Development Award grant CR 08S 3958), the Netherlands Organization for Scientific Research and the Netherlands Institute of Regenerative Medicine (S.R.B. and C.L.M.), the Victorian State Government Operational Infrastructure Support and the National Health and Medical Research Council of Australia's Independent Research Institutes Infrastructure Support Scheme (O.W.J.P. and C.B.). R.P.D. is funded by a Rubicon fellowship from the Netherlands Organization for Scientific Research and the Marie Curie Co-fund Action. E.G.S. and A.G.E. receive Senior Research Fellowships and D.M.K. receives a Principal Research Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

D.A.E., A.G.E., E.G.S. and C.L.M. designed the study. D.A.E., S.R.B., K.K., E.S.N., R.J., E.L.L., C.B., T.H., R.J.P.S., O.K., D.W.O., X.L., S.M.H., S.M.L., R.P., R.P.D., A.L.G., O.W.J.P., A.G.E., X.L., S.M.H., J.M.H., C.W.P. and D.M.K. performed and analyzed experiments. C.E.H. and Q.C.Y. performed bioinformatics analyses. D.A.E., C.L.M., A.G.E. and E.G.S. wrote the manuscript.

Corresponding authors

Correspondence to Andrew G Elefanty or Edouard G Stanley.

Ethics declarations

Competing interests

D.A.E., A.G.E. and E.G.S. have applied for a patent (US provisional USSN 61/492,099) in relation to results described in this paper.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–3 (PDF 4994 kb)

Supplementary Video 1

NKX2-5eGFP/w derived embryoid bodies express eGFP in contractile areas. Brightfield and green fluorescence of a day-14 NKX2-5eGFP/w embryoid body. This video demonstrates that contractile areas of the embryoid body express eGFP. (MOV 774 kb)

Supplementary Video 2

NKX2-5eGFP/w hESC cultured with the END2 endodermal cell line express eGFP in contractile areas. Movie shows a Z-dimension stack through the beating area demonstrating that eGFP is expressed with contracting clusters. (MOV 2962 kb)

Supplementary Video 3

Calcium flux across a contraction cycle. Green fluorescence (top left). Red fluorescence (top right). Brightfield (bottom left). Pseudo-colored video showing calcium flux (bottom right). (MOV 1931 kb)

Supplementary Video 4

Monolayer differentiation with NKX2-5eGFP/w hESCs. Brightfield and green fluorescence shows that beating foci are eGFP+. (MOV 936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, D., Braam, S., Koutsis, K. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8, 1037–1040 (2011). https://doi.org/10.1038/nmeth.1740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing