Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

2b-RAD: a simple and flexible method for genome-wide genotyping

Abstract

We describe 2b-RAD, a streamlined restriction site–associated DNA (RAD) genotyping method based on sequencing the uniform fragments produced by type IIB restriction endonucleases. Well-studied accessions of Arabidopsis thaliana were genotyped to validate the method's accuracy and to demonstrate fine-tuning of marker density as needed. The simplicity of the 2b-RAD protocol makes it particularly suitable for high-throughput genotyping as required for linkage mapping and profiling genetic variation in natural populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation and sequencing of 2b-RAD tags.
Figure 2: Accuracy, sequencing requirements and adjustment of marker densities in 2b-RAD genotyping.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

Sequence Read Archive

References

  1. Gray, I.C., Campbell, D.A. & Spurr, N.K. Hum. Mol. Genet. 9, 2403–2408 (2000).

    Article  CAS  Google Scholar 

  2. Morin, P.A., Luikart, G., Wayne, R.K. & the SNP Workshop Group. Trends Ecol. Evol. 19, 208–216 (2004).

    Article  Google Scholar 

  3. Clark, A.G., Hubisz, M.J., Bustamante, C.D., Williamson, S.H. & Nielsen, R. Genome Res. 15, 1496–1502 (2005).

    Article  CAS  Google Scholar 

  4. Maher, B. Nature 456, 18–21 (2008).

    Article  CAS  Google Scholar 

  5. Manolio, T.A. et al. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  6. Davey, J.W. et al. Nat. Rev. Genet. 12, 499–510 (2011).

    Article  CAS  Google Scholar 

  7. Baird, N.A. et al. PLoS ONE 3, e3376 (2008).

    Article  Google Scholar 

  8. Chutimanitsakun, Y. et al. BMC Genomics 12, 4 (2011).

    Article  CAS  Google Scholar 

  9. Hohenlohe, P.A. et al. PLoS Genet. 6, e1000862 (2010).

    Article  Google Scholar 

  10. Emerson, K.J. et al. Proc. Natl. Acad. Sci. USA 107, 16196–16200 (2010).

    Article  CAS  Google Scholar 

  11. Catchen, J., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. G3 (Bethesda) 1, 171–182 (2011).

    Article  CAS  Google Scholar 

  12. Van Tassell, C.P. et al. Nat. Methods 5, 247–252 (2008).

    Article  CAS  Google Scholar 

  13. van Orsouw, N.J. et al. PLoS ONE 2, e1172 (2007).

    Article  Google Scholar 

  14. Elshire, R.J. et al. PLoS ONE 6, e19379 (2011).

    Article  CAS  Google Scholar 

  15. Clark, R.M. et al. Science 317, 338–342 (2007).

    Article  CAS  Google Scholar 

  16. Mckay, J.K., Richards, J.H. & Mitchell-Olds, T. Mol. Ecol. 12, 1137–1151 (2003).

    Article  CAS  Google Scholar 

  17. Clauss, M.J., Cobban, H. & Mitchell-Olds, T. Mol. Ecol. 11, 591–601 (2002).

    Article  CAS  Google Scholar 

  18. Rumble, S.M. et al. PLoS Comput. Biol. 5, e1000386 (2009).

    Article  Google Scholar 

  19. Li, W. & Godzik, A. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  Google Scholar 

  20. Li, R. et al. Bioinformatics 25, 1966–1967 (2009).

    Article  CAS  Google Scholar 

  21. Li, R. et al. Genome Res. 19, 1124–1132 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grants DEB-1054766 to M.V.M. and DEB-1022196 to J.K.M., and by grants from the National Natural Science Foundation of China (31130054) and National High Technology Research and Development Program of China (2012AA10A405) to S.W. We are grateful to T.E. Juenger and D.L. Des Marais (University of Texas at Austin) for growing Arabidopsis samples.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and M.V.M. conceived and designed the study. S.W. developed the original protocol for 2b-RAD library preparation, and E.M. developed modifications for RTR. S.W. and E.M. prepared 2b-RAD libraries for SOLiD and Illumina sequencing. E.M. created bioinformatics scripts and conducted sequence analysis and genotype validation. J.K.M. provided Arabidopsis samples and contributed resequencing data for bioinformatic validation. S.W., E.M., J.K.M. and M.V.M. wrote the paper. M.V.M. supervised the whole study.

Corresponding authors

Correspondence to Shi Wang or Eli Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 , Supplementary Tables 1–11 and Supplementary Protocol (PDF 365 kb)

Supplementary Software

Perl scripts for 2b-RAD analysis. (ZIP 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Meyer, E., McKay, J. et al. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9, 808–810 (2012). https://doi.org/10.1038/nmeth.2023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing