Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local Ca2+ detection and modulation of synaptic release by astrocytes

Abstract

Astrocytes communicate with synapses by means of intracellular calcium ([Ca2+]i) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (12 μm) [Ca2+]i elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (4 μm), fast (millisecond-scale) miniature Ca2+ responses. This Ca2+ activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate–dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca2+]i or blocking a receptor mediating local astrocyte Ca2+ signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging Ca2+ activity in micrometric astrocytic process domains in the adult hippocampus.
Figure 2: Two types of Ca2+ events, focal and expanded, in astrocytic processes.
Figure 3: Ca2+ events in astrocytic processes are triggered by spontaneous and action potential–dependent synaptic activity.
Figure 4: Local synaptic release evoked by sucrose triggers focal Ca2+ events in astrocytic processes.
Figure 5: Ca2+ events in astrocytic processes are mediated by GTP- and InsP3-dependent signaling.
Figure 6: Blockade of Ca2+ activity in astrocytic processes decreases basal transmission at local synapses: role of P2Y1R.

Similar content being viewed by others

References

  1. Halassa, M.M. & Haydon, P.G. Integrated brain circuits: astrocytic networks modulate neuronal activity and behaviour. Annu. Rev. Physiol. 72, 335–355 (2010).

    Article  CAS  Google Scholar 

  2. Perea, G., Navarrete, M. & Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009).

    Article  CAS  Google Scholar 

  3. Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    Article  CAS  Google Scholar 

  4. Fiacco, T.A. et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 54, 611–626 (2007).

    Article  CAS  Google Scholar 

  5. Perea, G. & Araque, A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317, 1083–1086 (2007).

    Article  CAS  Google Scholar 

  6. Henneberger, C., Papouin, T., Oliet, S.H.R. & Rusakov, D.A. Long term potentiation depends on D-serine release from astrocytes. Nature 463, 232–236 (2010).

    Article  CAS  Google Scholar 

  7. Agulhon, C., Fiacco, T.A. & McCarthy, K.D. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327, 1250–1254 (2010).

    Article  CAS  Google Scholar 

  8. Hamilton, N.B. & Attwell, D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11, 227–238 (2010).

    Article  CAS  Google Scholar 

  9. Nett, W.J., Oloff, S.H. & McCarthy, K.D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

    Article  Google Scholar 

  10. Parri, H.R., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).

    Article  CAS  Google Scholar 

  11. Hirase, H., Quian, L., Bartho', P. & Buzsàki, G. Calcium dynamics of astrocytic networks in vivo. PLoS Biol. 2, E96 (2004).

    Article  Google Scholar 

  12. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N.D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  13. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816–823 (2006).

    Article  CAS  Google Scholar 

  14. Grosche, J. et al. Microdomains for neuron-glia interactions: parallel fiber signaling to Bergmann glial cells. Nat. Neurosci. 2, 139–143 (1999).

    Article  CAS  Google Scholar 

  15. Yasuda, R. et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE pl5, 219 (2004).

    Google Scholar 

  16. Zhou, M., Schools, G.P. & Kimelberg, H.K. Development of GLAST+ astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J. Neurophysiol. 95, 134–143 (2006).

    Article  CAS  Google Scholar 

  17. Colonnese, M.T., Zhao, J.P. & Constantine-Paton, M. NMDA receptor currents suppress synapse formation on sprouting axons in vivo. J. Neurosci. 25, 1291–1303 (2005).

    Article  CAS  Google Scholar 

  18. Trommald, M. & Hulleberg, G. Dimensions and density of dendritic spines from rat dentate granule cells based on reconstructions from serial electron micrographs. J. Comp. Neurol. 377, 15–28 (1997).

    Article  CAS  Google Scholar 

  19. Wang, S.Y. & Wang, G.K. Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell. Signal. 15, 151–159 (2003).

    Article  CAS  Google Scholar 

  20. Zhou, Q., Petersen, C.C. & Nicoll, R.A. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J. Physiol. (Lond.) 525, 195–206 (2000).

    Article  CAS  Google Scholar 

  21. Domercq, M. et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J. Biol. Chem. 281, 30684–30696 (2006).

    Article  CAS  Google Scholar 

  22. Jourdain, P. et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10, 331–339 (2007).

    Article  CAS  Google Scholar 

  23. Santello, M., Bezzi, P. & Volterra, A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69, 988–1001 (2011).

    Article  CAS  Google Scholar 

  24. Ikeda, K. & Bekkers, J.M. Counting the number of releasable synaptic vesicles in a presynaptic terminal. Proc. Natl. Acad. Sci. USA 106, 2945–2950 (2009).

    Article  CAS  Google Scholar 

  25. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  26. Petravicz, J., Fiacco, T.A. & McCarthy, K.D. Loss of IP3Receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J. Neurosci. 28, 4967–4973 (2008).

    Article  CAS  Google Scholar 

  27. Raastad, M., Storm, J.F. & Andersen, P. Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur. J. Neurosci. 4, 113–117 (1992).

    Article  Google Scholar 

  28. Min, M.-Y., Asztely, F., Kokaia, M. & Kullmann, D.M. Long-term potentiation and dual-component quantal signaling in the dentate gyrus. Proc. Natl. Acad. Sci. USA 95, 4702–4707 (1998).

    Article  CAS  Google Scholar 

  29. Wu, J. et al. NMDA receptor- and metabotropic glutamate receptor-dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro. J. Physiol. (Lond.) 533, 745–755 (2001).

    Article  CAS  Google Scholar 

  30. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  31. Navarrete, M. & Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 57, 883–893 (2008).

    Article  CAS  Google Scholar 

  32. Liu, Y.B., Lio, P.A., Pasternak, J.F. & Trommer, B.L. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus. J. Neurophysiol. 76, 1074–1088 (1996).

    Article  CAS  Google Scholar 

  33. Goldberg, J.H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).

    Article  CAS  Google Scholar 

  34. Soler-Llavina, G.J. & Sabatini, B.L. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat. Neurosci. 9, 798–806 (2006).

    Article  CAS  Google Scholar 

  35. Chao, T.I., Rickmann, M. & Wolff, J.R. The synapse-astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In The Tripartite Synapse: Glia in Synaptic Transmission (eds. Volterra, A., Magistretti, P.J. & Haydon, P.G.) 3–23 (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  36. Bezzi, P. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620 (2004).

    Article  CAS  Google Scholar 

  37. Witcher, M.R., Kirov, S.A. & Harris, K.M. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55, 13–23 (2007).

    Article  Google Scholar 

  38. Matsui, K. & Jahr, C.E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003).

    Article  CAS  Google Scholar 

  39. Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2, 503–507 (1999).

    Article  CAS  Google Scholar 

  40. Mori, M., Heuss, C., Gähwiler, B.H. & Gerber, U. Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J. Physiol. (Lond.) 535, 115–123 (2001).

    Article  CAS  Google Scholar 

  41. Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R.A. Quantal release of ATP in mouse cortex. J. Gen. Physiol. 129, 257–265 (2007).

    Article  CAS  Google Scholar 

  42. Matyash, V., Filippov, V., Mohrhagen, K. & Kettenmann, H. Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol. Cell. Neurosci. 18, 664–670 (2001).

    Article  CAS  Google Scholar 

  43. Bergersen, L.H. et al. Immunogold detection of L-glutamate and D-serine in small synaptic like microvesicles in adult hippocampal astrocytes. Cereb. Cortex (in the press).

  44. Golovina, V.A. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J. Physiol. (Lond.) 564, 737–749 (2005).

    Article  CAS  Google Scholar 

  45. Doengi, M. et al. GABA uptake-dependent (Ca2+) signalling in developing olfactory bulb astrocytes. Proc. Natl. Acad. Sci. USA 106, 17570–17575 (2009).

    Article  CAS  Google Scholar 

  46. Palygin, O., Lalo, U., Verkhratsky, A. & Pankratov, Y. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48, 225–231 (2010).

    Article  CAS  Google Scholar 

  47. McKinney, R.A., Capogna, M., Dürr, R., Gähwiler, B.H. & Thompson, S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  Google Scholar 

  48. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  Google Scholar 

  49. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  Google Scholar 

  50. Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Bezzi for experiments in cultured astrocytes and critical comments, K.D. McCarthy (University of North Carolina, Chapel Hill) and P.G. Haydon (Tufts University) for providing Itpr2−/− mice, H. Kettenmann (Max Delbrück Center) for providing GFAP-EGFP mice, V. Crunelli, R. Schneggenburger and F. Helmchen for suggestions, and T. Oertner for critical reading of a previous manuscript version. This work was supported by grants from Swiss National Science Foundation (3100A0–100850 and 3100A0–120398) to A.V.; J.C. received a postdoctoral fellowship from MBF Foundation, Triesen, LI/Synapsis Foundation, Zurich; P.T., from Swiss National Science Foundation National Center of Competence in Research 'Synapsy'. M.S. received a University of Lausanne Faculty of Biology and Medicine PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.A.D.C. performed imaging, electrophysiology (including minimal stimulations) and data analysis; J.C. coordinated imaging, software development and performed imaging and data analysis; and the three next authors contributed equally: N.L. developed software for imaging data analysis and participated in imaging and imaging data analysis; K.B. performed imaging and electrophysiology and contributed to software development in the first part of the project; and M.S. performed imaging, electrophysiology and electrophysiology analysis. D.B. performed immunohistochemistry, P.T. performed imaging and data analysis in the last part of the project, and A.V. coordinated the project and wrote the manuscript.

Corresponding author

Correspondence to Andrea Volterra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Data 1 and 2 (PDF 722 kb)

Supplementary Video 1

Ca2+ activity in astrocytic processes in basal condition. Ca2+ imaging sequence (150 s, 3 Hz, accelerated 5 times) in the processes of an astrocyte in the adult dentate molecular layer. Ca2+ activity comprises “focal” Ca2+ events, randomly recurrent, fast local transients; and “expanded” Ca2+ events, less frequent, large scale, longer-lasting transients. (AVI 2535 kb)

Supplementary Video 2

From astrocytes to micrometric sub-regions: the segmentation principle. The movie summarizes the different steps of segmentation of astrocytic processes into sub-regions of ~1 μm+ in which Ca2+ activity is studied. 3D morphology is built from the fluorescence signal of the Ca2+-insensitive dye Texas Red. (AVI 1720 kb)

Supplementary Video 3

Effect of TTX on Ca2+ activity in astrocytic processes. Dual sequence (150 s, 3 Hz) of Ca2+ activity in basal condition (left) and upon TTX treatment (right). Blocking action potentials affects primarily expanded Ca2+ events, whereas focal Ca2+ activity is largely maintained. (AVI 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Castro, M., Chuquet, J., Liaudet, N. et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14, 1276–1284 (2011). https://doi.org/10.1038/nn.2929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing