Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Saccadic eye movements cause compression of time as well as space

Abstract

There is now considerable evidence that space is compressed when stimuli are flashed shortly before or after the onset of a saccadic eye movement. Here we report that short intervals of time between two successive perisaccadic visual (but not auditory) stimuli are also underestimated, indicating a compression of perceived time. We were even more surprised that in a critical interval before saccades, perceived temporal order is consistently reversed. The very similar time courses of spatial and temporal compression suggest that both are mediated by a common neural mechanism, probably related to the predictive shifts that occur in receptive fields of many visual areas at the time of saccades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the experimental setup.
Figure 2: Compression of time during saccades.
Figure 3: Compression and increased precision of time during saccades.
Figure 4: Temporal inversion.

Similar content being viewed by others

References

  1. Ross, J., Morrone, M.C., Goldberg, M.E. & Burr, D.C. Changes in visual perception at the time of saccades. Trends Neurosci. 24, 113–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Matin, L. in Handbook of Sensory Physiology vol. VII/4: Visual Psychophysics (eds. Jameson, D. & Hurvich, L.M.) 331–380 (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  3. Honda, H. Perceptual localization of visual stimuli flashed during saccades. Percept. Psychophys. 45, 162–174 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Ross, J., Morrone, M.C. & Burr, D.C. Compression of visual space before saccades. Nature 386, 598–601 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Morrone, M.C., Ross, J. & Burr, D.C. Apparent position of visual targets during real and simulated saccadic eye movements. J. Neurosci. 17, 7941–7953 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lappe, M., Awater, H. & Krekelberg, B. Postsaccadic visual references generate presaccadic compression of space. Nature 403, 892–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kaiser, M. & Lappe, M. Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41, 293–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusunoki, M. & Goldberg, M.E. The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J. Neurophysiol. 89, 1519–1527 (2003).

    Article  PubMed  Google Scholar 

  11. Leon, M.I. & Shadlen, M.N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Deubel, H. & Schneider, W.X. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res. 36, 1827–1837 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gersch, T.M., Kowler, E. & Dosher, B. Dynamic allocation of visual attention during the execution of sequences of saccades. Vision Res. 44, 1469–1483 (2004).

    Article  PubMed  Google Scholar 

  15. Stevenson, S.B., Volkmann, F.C., Kelly, J.P. & Riggs, L.A. Dependence of visual suppression on the amplitudes of saccades and blinks. Vision Res. 26, 1815–1824 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Ridder, W.H., III & Tomlinson, A. Suppression of contrast sensitivity during eyelid blinks. Vision Res. 33, 1795–1802 (1993).

    Article  PubMed  Google Scholar 

  17. Rose, D. & Summers, J. Duration illusions in a train of visual stimuli. Perception 24, 1177–1187 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Enns, J.T., Brehaut, J.C. & Shore, D.I. The duration of a brief event in the mind's eye. J. Gen. Psychol. 126, 355–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Tse, P., Intriligator, J., Rivest, J. & Cavanagh, P. Attention and the subjective expansion of time. Percept. Psychophys. 66, 1171–1189 (2004).

    Article  PubMed  Google Scholar 

  20. Titchener, E.B. Lectures on the Elementary Psychology of Feeling and Attention (MacMillan, New York, 1908).

    Book  Google Scholar 

  21. Reeves, A. & Sperling, G. Attention gating in short-term visual memory. Psychol. Rev. 93, 180–206 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Sperling, G. & Weichselgartner, E. Episodic theory of the dynamics of spatial attention. Psychol. Rev. 102, 503–532 (1995).

    Article  Google Scholar 

  23. Shore, D.I., Spence, C. & Klein, R.M. Visual prior entry. Psychol. Sci. 12, 205–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Park, J., Schlag-Rey, M. & Schlag, J. Spatial localization precedes temporal determination in visual perception. Vision Res. 43, 1667–1674 (2003).

    Article  PubMed  Google Scholar 

  25. Bridgeman, B., Hendry, D. & Stark, L. Failure to detect displacement of visual world during saccadic eye movements. Vision Res. 15, 719–722 (1975).

    Article  CAS  PubMed  Google Scholar 

  26. McConkie, G.W. & Zola, D. Is visual information integrated across succesive fixations in reading? Percept. Psychophys. 25, 221–224 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Henderson, J.M. & Hollingworth, A. Global transsaccadic change blindness during scene perception. Psychol. Sci. 14, 493–497 (2003).

    Article  PubMed  Google Scholar 

  28. Niemeier, M., Crawford, J.D. & Tweed, D.B. Optimal transsaccadic integration explains distorted spatial perception. Nature 422, 76–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Burr, D.C. & Morrone, M.C. Temporal impulse response functions for luminance and colour during saccades. Vision Res. 36, 2069–2078 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Yarrow, K., Haggard, P., Heal, R., Brown, P. & Rothwell, J.C. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414, 302–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Park, J., Schlag-Rey, M. & Schlag, J. Voluntary action expands perceived duration of its sensory consequence. Exp. Brain Res. 149, 527–529 (2003).

    Article  PubMed  Google Scholar 

  32. Yarrow, K. & Rothwell, J.C. Manual chronostasis: tactile perception precedes physical contact. Curr. Biol. 13, 1134–1139 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Hodinott-Hill, I., Thilo, K.V., Cowey, A. & Walsh, V. Auditory chronostasis: hanging on the telephone. Curr. Biol. 12, 1779–1781 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Haggard, P., Clark, S. & Kalogeras, J. Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Gibbon, J. Scalar expectancy theory and Weber's Law in animal timing. Psychol. Rev. 84, 279–325 (1977).

    Article  Google Scholar 

  36. Santoro, L., Burr, D. & Morrone, M.C. Saccadic compression can improve detection of Glass patterns. Vision Res. 42, 1361–1366 (2002).

    Article  PubMed  Google Scholar 

  37. Ross, J. in Department of Psychology Research Report 4 (University of Western Australia, Perth, 1972).

    Google Scholar 

  38. Libet, B., Wright, E.W., Jr., Feinstein, B. & Pearl, D.K. Subjective referral of the timing for a conscious sensory experience: a functional role for the somatosensory specific projection system in man. Brain 102, 193–224 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Eagleman, D.M. & Sejnowski, T.J. Motion integration and postdiction in visual awareness. Science 287, 2036–2038 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Carpenter, R.H.S. Movement of the Eyes (Pion, London, 1988).

    Google Scholar 

Download references

Acknowledgements

We acknowledge relevant previous work in our laboratory by M.R. Diamond. This research was funded by grants from the Australian National Health and Medical Research Council and the Australian Research Committee and by the Italian Ministry of Education, Universities and Research (Progetti di Ricerca di Interesse Nazionale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Burr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrone, M., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8, 950–954 (2005). https://doi.org/10.1038/nn1488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing