Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The proprioceptive representation of eye position in monkey primary somatosensory cortex

Abstract

The cerebral cortex must have access to an eye position signal, as humans can report passive changes in eye position in total darkness, and visual responses in many cortical areas are modulated by eye position. The source of this signal is unknown. Here we demonstrate a representation of eye position in monkey primary somatosensory cortex, in the representation of the trigeminal nerve, near cells with a tactile representation of the contralateral brow. The neurons have eye position signals that increase monotonically with increasing orbital eccentricity from near the center of gaze, with directionally selectivity tuned in a Gaussian manner. All directions of eye position are represented in a single hemisphere. The signal is proprioceptive, because it can be obliterated by anesthetizing the contralateral orbit. It is not related to foveal or peripheral visual stimulation, and it represents the position of the eye in the head and not the angle of gaze in space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity of a tonic eye position neuron in monkey SI.
Figure 2: Location and tuning of eye position neurons.
Figure 3: Tonic and phasic responses of S1 eye position neurons.
Figure 4: Effect of retrobulbar block on neural activity.
Figure 5: Gradual effect of partial block on the eye position signal.
Figure 6: Independence of signal from gaze in space and foveal visual stimulation.
Figure 7: Independence of activity from background illumination.

Similar content being viewed by others

References

  1. Skavenski, A.A. Inflow as a source of extraretinal eye position information. Vision Res. 12, 221–229 (1972).

    Article  CAS  Google Scholar 

  2. Sakata, H., Shibutani, H. & Kawano, K. Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 43, 1654–1672 (1980).

    Article  CAS  Google Scholar 

  3. Andersen, R.A. & Mountcastle, V.B. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3, 532–548 (1983).

    Article  CAS  Google Scholar 

  4. Mullette-Gillman, O.A., Cohen, Y.E. & Groh, J.M. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. J. Neurophysiol. 94, 2331–2352 (2005).

    Article  Google Scholar 

  5. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  Google Scholar 

  6. van Opstal, A.J., Hepp, K., Suzuki, Y. & Henn, V. Influence of eye position on activity in monkey superior colliculus. J. Neurophysiol. 74, 1593–1610 (1995).

    Article  CAS  Google Scholar 

  7. Lal, R., Friedlander, M.J. & Brunet, P. Effect of passive eye position changes on retinogeniculate transmission in the cat. J. Neurophysiol. 63, 502–522 (1990).

    Article  CAS  Google Scholar 

  8. Rose, D. The historical roots of the theories of local signs and labelled lines. Perception 28, 675–685 (1999).

    Article  CAS  Google Scholar 

  9. Campos, M., Cherian, A. & Segraves, M.A. Effects of eye position upon activity of neurons in macaque superior colliculus. J. Neurophysiol. 95, 505–526 (2006).

    Article  Google Scholar 

  10. Duhamel, J.-R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  11. Sommer, M.A. & Wurtz, R.H. A pathway in primate brain for internal monitoring of movements. Science 296, 1480–1482 (2002).

    Article  CAS  Google Scholar 

  12. Krubitzer, L., Huffman, K.J., Disbrow, E. & Recanzone, G. Organization of area 3a in macaque monkeys: contributions to the cortical phenotype. J. Comp. Neurol. 471, 97–111 (2004).

    Article  Google Scholar 

  13. Donaldson, I.M. The functions of the proprioceptors of the eye muscles. Phil. Trans. R. Soc. Lond. B 355, 1685–1754 (2000).

    Article  CAS  Google Scholar 

  14. Buttner-Ennever, J.A. & Horn, A.K. The neuroanatomical basis of oculomotor disorders: the dual motor control of extraocular muscles and its possible role in proprioception. Curr. Opin. Neurol. 15, 35–43 (2002).

    Article  Google Scholar 

  15. Eberhorn, A.C., Horn, A.K., Fischer, P. & Buttner-Ennever, J.A. Proprioception and palisade endings in extraocular eye muscles. Ann. NY Acad. Sci. 1039, 1–8 (2005).

    Article  Google Scholar 

  16. Porter, J.D., Guthrie, B.L. & Sparks, D.L. Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 218, 208–219 (1983).

    Article  CAS  Google Scholar 

  17. Wurtz, R.H. Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol. 32, 727–742 (1969).

    Article  CAS  Google Scholar 

  18. Richmond, B.J. & Wurtz, R.H. Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. J. Neurophysiol. 43, 1156–1167 (1980).

    Article  CAS  Google Scholar 

  19. Phillips, C.G., Powell, T.P. & Wiesendanger, M. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon's cortex. J. Physiol. (Lond.) 217, 419–446 (1971).

    Article  CAS  Google Scholar 

  20. Taylor, A., Durbaba, R., Ellaway, P.H. & Rawlinson, S. Static and dynamic gamma-motor output to ankle flexor muscles during locomotion in the decerebrate cat. J. Physiol. (Lond.) 571, 711–723 (2006).

    Article  CAS  Google Scholar 

  21. Wise, S.P. & Tanji, J. Neuronal responses in sensorimotor cortex to ramp displacements and maintained positions imposed on hindlimb of the unanesthetized monkey. J. Neurophysiol. 45, 482–500 (1981).

    Article  CAS  Google Scholar 

  22. Widener, G.L. & Cheney, P.D. Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey. J. Neurophysiol. 77, 2446–2465 (1997).

    Article  CAS  Google Scholar 

  23. Henn, V., Lang, W., Hepp, K. & Reisine, H. Experimental gaze palsies in monkeys and their relation to human pathology. Brain 107, 619–636 (1984).

    Article  Google Scholar 

  24. Guthrie, B.L., Porter, J.D. & Sparks, D.L. Corollary discharge provides accurate eye position information to the oculomotor system. Science 221, 1193–1195 (1983).

    Article  CAS  Google Scholar 

  25. Lewis, R.F., Gaymard, B.M. & Tamargo, R.J. Efference copy provides the eye position information required for visually guided reaching. J. Neurophysiol. 80, 1605–1608 (1998).

    Article  CAS  Google Scholar 

  26. Gauthier, G.M., Nommay, D. & Vercher, J.L. The role of ocular muscle proprioception in visual localization of targets. Science 249, 58–61 (1990).

    Article  CAS  Google Scholar 

  27. Steinbach, M.J. Inflow as a long-term calibrator of eye position in humans. Acta Psychol. (Amst.) 63, 297–306 (1986).

    Article  CAS  Google Scholar 

  28. Lewis, R.F., Zee, D.S., Gaymard, B.M. & Guthrie, B.L. Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. J. Neurophysiol. 72, 1028–1031 (1994).

    Article  CAS  Google Scholar 

  29. Steinbach, M.J. Proprioceptive knowledge of eye position. Vision Res. 27, 1737–1744 (1987).

    Article  CAS  Google Scholar 

  30. Dengis, C.A., Steinbach, M.J. & Kraft, S.P. Registered eye position: short- and long-term effects of botulinum toxin injected into eye muscle. Exp. Brain Res. 119, 475–482 (1998).

    Article  CAS  Google Scholar 

  31. Robinson, D.A. Oculomotor unit behavior in the monkey. J. Neurophysiol. 33, 393–404 (1970).

    Article  CAS  Google Scholar 

  32. Snyder, L.H., Grieve, K.L., Brotchie, P. & Andersen, R.A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998).

    Article  CAS  Google Scholar 

  33. Zipser, D. & Andersen, R.A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).

    Article  CAS  Google Scholar 

  34. Pouget, A., Deneve, S. & Sejnowski, T.J. Frames of reference in hemineglect: a computational approach. Prog. Brain Res. 121, 81–97 (1999).

    Article  CAS  Google Scholar 

  35. Salinas, E. & Abbott, L.F. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).

    Article  CAS  Google Scholar 

  36. Klier, E.M., Wang, H. & Crawford, J.D. Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. J. Neurophysiol. 89, 2839–2853 (2003).

    Article  Google Scholar 

  37. Duhamel, J.R., Goldberg, M.E., Fitzgibbon, E.J., Sirigu, A. & Grafman, J. Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. Brain 115, 1387–1402 (1992).

    Article  Google Scholar 

  38. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  39. Hays, A.V., Richmond, B.J. & Optican, L.M. A UNIX-based multiple process system for real-time data acquisition and control. WESCON Conference Proceedings 2, 1–10 (1982).

    Google Scholar 

  40. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  41. Bisley, J.W., Krishna, B.S. & Goldberg, M.E. A rapid and precise on-response in posterior parietal cortex. J. Neurosci. 24, 1833–1838 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Eggers for teaching us how to perform retrobulbar blocks, G. Duncan for electronic and computer support, Y. Pavlova for dedicated animal maintenance, M. Osman and G. Asfaw for veterinary care, S. Dashnaw and J. Hirsch for MRI, and L. Palmer for facilitating everything. This research was supported by grants from the James S. McDonnell Foundation, the US National Eye Institute (1 R01 EY014978-01 and 1 R24 EY015634-01), and the Whitehall, Keck, Dana and Kavli Foundations.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and M.W. recorded all the neural activity, did much of the data analysis and made the figures. I.S.C. wrote many of the data analysis programs and did some of the preliminary data analysis. M.E.G. dreamed up the project, worked out the retrobulbar block technique with H. Eggers and supervised the entire project.

Corresponding author

Correspondence to Mingsha Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Effect of eye eccentricity on cell response. (PDF 37 kb)

Supplementary Table 2

The effect of the retrobulbar block on each cell. (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, M., Cohen, I. et al. The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10, 640–646 (2007). https://doi.org/10.1038/nn1878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing