Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of visually guided behavior by distinct populations of spinal projection neurons

Abstract

A basic question in the field of motor control is how different actions are represented by activity in spinal projection neurons. We used a new behavioral assay to identify visual stimuli that specifically drive basic motor patterns in zebrafish. These stimuli evoked consistent patterns of neural activity in the neurons projecting to the spinal cord, which we could map throughout the entire population using in vivo two-photon calcium imaging. We found that stimuli that drive distinct behaviors activated distinct subsets of projection neurons, consisting, in some cases, of just a few cells. This stands in contrast to the distributed activation seen for more complex behaviors. Furthermore, targeted cell by cell ablations of the neurons associated with evoked turns abolished the corresponding behavioral response. This description of the functional organization of the zebrafish motor system provides a framework for identifying the complete circuit underlying a vertebrate behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral responses to drifting gratings.
Figure 2: Measuring calcium responses in spinal projection neurons.
Figure 3: Summary of direction tuning of all spinal projection neurons.
Figure 4: Spatial distribution of visually responsive cells.
Figure 5: Laser ablation of turning-selective neurons.

Similar content being viewed by others

References

  1. Orlovsky, G.N., Deliagina, T.G. & Grillner, S. Neuronal Control of Locomotion (Oxford University Press, New York, 1999).

    Book  Google Scholar 

  2. Rossignol, S., Dubuc, R.J. & Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006).

    Article  Google Scholar 

  3. Zelenin, P.V. Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey. Eur. J. Neurosci. 22, 2271–2282 (2005).

    Article  Google Scholar 

  4. Deliagina, T.G., Zelenin, P.V. & Orlovsky, G.N. Encoding and decoding of reticulospinal commands. Brain Res. Brain Res. Rev. 40, 166–177 (2002).

    Article  Google Scholar 

  5. Korn, H. & Faber, D.S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).

    Article  CAS  Google Scholar 

  6. Gahtan, E. & Baier, H. Of lasers, mutants and see-through brains: functional neuroanatomy in zebrafish. J. Neurobiol. 59, 147–161 (2004).

    Article  Google Scholar 

  7. Saint-Amant, L. & Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 37, 622–632 (1998).

    Article  CAS  Google Scholar 

  8. Budick, S.A. & O'Malley, D.M. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol. 203, 2565–2579 (2000).

    CAS  PubMed  Google Scholar 

  9. Burgess, H.A. & Granato, M. Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol. 210, 2526–2539 (2007).

    Article  Google Scholar 

  10. Kimmel, C.B., Powell, S.L. & Metcalfe, W.K. Brain neurons which project to the spinal cord in young larvae of the zebrafish. J. Comp. Neurol. 205, 112–127 (1982).

    Article  CAS  Google Scholar 

  11. Lee, R.K. & Eaton, R.C. Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J. Comp. Neurol. 304, 34–52 (1991).

    Article  CAS  Google Scholar 

  12. O'Malley, D.M., Kao, Y.H. & Fetcho, J.R. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17, 1145–1155 (1996).

    Article  CAS  Google Scholar 

  13. Metcalfe, W.K., Mendelson, B. & Kimmel, C.B. Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J. Comp. Neurol. 251, 147–159 (1986).

    Article  CAS  Google Scholar 

  14. Gahtan, E. & O'Malley, D.M. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns. J. Comp. Neurol. 459, 186–200 (2003).

    Article  Google Scholar 

  15. Nissanov, J., Eaton, R.C. & DiDomenico, R. The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res. 517, 88–98 (1990).

    Article  CAS  Google Scholar 

  16. Liu, K.S. & Fetcho, J.R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325–335 (1999).

    Article  CAS  Google Scholar 

  17. Burgess, H.A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci. 27, 4984–4994 (2007).

    Article  CAS  Google Scholar 

  18. Gahtan, E., Sankrithi, N., Campos, J.B. & O'Malley, D.M. Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87, 608–614 (2002).

    Article  Google Scholar 

  19. Briggman, K.L., Abarbanel, H.D. & Kristan, W.B., Jr. Optical imaging of neuronal populations during decision-making. Science 307, 896–901 (2005).

    Article  CAS  Google Scholar 

  20. Wu, J.Y., Cohen, L.B. & Falk, C.X. Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263, 820–823 (1994).

    Article  CAS  Google Scholar 

  21. Bosch, T.J., Maslam, S. & Roberts, B.L. Fos-like immunohistochemical identification of neurons active during the startle response of the rainbow trout. J. Comp Neurol. 439, 306–314 (2001).

    Article  CAS  Google Scholar 

  22. Zelenin, P.V., Orlovsky, G.N. & Deliagina, T.G. Sensory-motor transformation by individual command neurons. J. Neurosci. 27, 1024–1032 (2007).

    Article  CAS  Google Scholar 

  23. Wiersma, C.A. & Ikeda, K. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525 (1964).

    Article  CAS  Google Scholar 

  24. Pearson, K.G. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16, 265–297 (1993).

    Article  CAS  Google Scholar 

  25. Orger, M.B., Smear, M.C., Anstis, S.M. & Baier, H. Perception of fourier and non-fourier motion by larval zebrafish. Nat. Neurosci. 3, 1128–1133 (2000).

    Article  CAS  Google Scholar 

  26. Borla, M.A., Palecek, B., Budick, S. & O'Malley, D.M. Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav. Evol. 60, 207–229 (2002).

    Article  Google Scholar 

  27. Euler, T., Detwiler, P.B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

    Article  CAS  Google Scholar 

  28. Chung, S.H., Clark, D.A., Gabel, C.V., Mazur, E. & Samuel, A.D. The role of the AFD neuron in C. elegans thermotaxis analyzed using femtosecond laser ablation. BMC Neurosci. 7, 30 (2006).

    Article  Google Scholar 

  29. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  CAS  Google Scholar 

  30. Leonardo, A. & Fee, M.S. Ensemble coding of vocal control in birdsong. J. Neurosci. 25, 652–661 (2005).

    Article  CAS  Google Scholar 

  31. d'Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308 (2003).

    Article  CAS  Google Scholar 

  32. Bizzi, E., d'Avella, A., Saltiel, P. & Tresch, M. Modular organization of spinal motor systems. Neuroscientist 8, 437–442 (2002).

    Article  CAS  Google Scholar 

  33. Gahtan, E. & O'Malley, D.M. Rapid lesioning of large numbers of identified vertebrate neurons: applications in zebrafish. J. Neurosci. Methods 108, 97–110 (2001).

    Article  CAS  Google Scholar 

  34. Zottoli, S.J., Newman, B.C., Rieff, H.I. & Winters, D.C. Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus). J. Comp. Physiol. [A] 184, 207–218 (1999).

    Article  CAS  Google Scholar 

  35. Gahtan, E., Tanger, P. & Baier, H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J. Neurosci. 25, 9294–9303 (2005).

    Article  CAS  Google Scholar 

  36. Mendelson, B. Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J. Comp. Neurol. 251, 172–184 (1986).

    Article  CAS  Google Scholar 

  37. Kimura, Y., Okamura, Y. & Higashijima, S. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci. 26, 5684–5697 (2006).

    Article  CAS  Google Scholar 

  38. Bhatt, D.H., McLean, D.L., Hale, M.E. & Fetcho, J.R. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron 53, 91–102 (2007).

    Article  CAS  Google Scholar 

  39. McLean, D.L., Fan, J., Higashijima, S., Hale, M.E. & Fetcho, J.R. A topographic map of recruitment in spinal cord. Nature 446, 71–75 (2007).

    Article  CAS  Google Scholar 

  40. Chong, M. & Drapeau, P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev. Neurobiol. 67, 933–947 (2007).

    Article  Google Scholar 

  41. Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941–951 (2005).

    Article  CAS  Google Scholar 

  42. Sato, T., Hamaoka, T., Aizawa, H., Hosoya, T. & Okamoto, H. Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J. Neurosci. 27, 5271–5279 (2007).

    Article  CAS  Google Scholar 

  43. Higashijima, S., Masino, M.A., Mandel, G. & Fetcho, J.R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003).

    Article  Google Scholar 

  44. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L. & Raible, D.W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural crest–derived pigment cell fate. Development 126, 3757–3767 (1999).

    CAS  PubMed  Google Scholar 

  45. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Meister, T. Bonhoeffer, J.R. Sanes, B.P. Olveczky, M.C. Smear and J.E. Dowling for valuable comments on the manuscript, D.M. O'Malley for advice on experimental techniques, A.F. Schier for generous help with fish rearing and O.C. Orger for assistance with data analysis. This work was supported by postdoctoral fellowships from the Helen Hay Whitney Foundation (M.B.O.) and Human Frontier Science Program (J.H.B.), and US National Institutes of Health grant R01 EY014429-01A2 and funding from the McKnight and Dana Foundations (F.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B Orger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 243 kb)

Supplementary Movie 1

Phenotype of Mauthner array ablation. The left Mauthner cell and its segmental homologs have been ablated in a 6-d-old zebrafish. In response to a pressure pulse delivered by a picospritzer to the right of the body, the fish responds with a leftward tail bend with a latency of 8 ms. In contrast, the rightward bend elicited by the same stimulus delivered to the left side of the body has a latency of 35 ms. Flashed rectangle indicates the onset of the pulse. (AVI 4691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orger, M., Kampff, A., Severi, K. et al. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 11, 327–333 (2008). https://doi.org/10.1038/nn2048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing