Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

Abstract

One proposal for a solid-state-based quantum bit (qubit) is to control coupled electron spins on adjacent semiconductor quantum dots1,2. Most experiments have focused on quantum dots made from III–V semiconductors; however, the coherence of electron spins in these materials is limited by hyperfine interactions with nuclear spins3,4,5,6. Ge/Si core/shell nanowires seem ideally suited to overcome this limitation, because the most abundant nuclei in Ge and Si have spin zero and the nanowires can be chemically synthesized defect-free with tunable properties7. Here, we present a double quantum dot based on Ge/Si nanowires in which we can completely control the coupling between the dots and to the leads. We also demonstrate that charge on the double dot can be detected by coupling it capacitively to an adjacent nanowire quantum dot. The double quantum dot and integrated charge sensor serve as an essential building block to form a solid-state qubit free of nuclear spin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ge/Si nanowire double dot device and demonstration of tunable interdot coupling.
Figure 2: Simultaneous transport and charge sensing measurements.
Figure 3: Charge sensing of an isolated double dot.
Figure 4: Interdot tunnelling measured with the charge sensor.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. cond-mat/0610433 (2006).

  3. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  4. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  Google Scholar 

  5. Burkard, G., Loss, D. & DiVincenzo, D. P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

    Article  CAS  Google Scholar 

  6. Khaetskii, A. V., Loss, D. & Glazman. L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  Google Scholar 

  7. Lu, W., Xiang, J., Timko, B. P., Wu, Y. & Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl Acad. Sci. USA 102, 10046–10051 (2005).

    Article  CAS  Google Scholar 

  8. Fasth, C., Fuhrer, A., Björk, M. T. & Samuelson, L. Tunable double quantum dots in InAs nanowires defined by local gate electrodes. Nano Lett. 5, 1487–1490 (2005).

    Article  CAS  Google Scholar 

  9. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article  CAS  Google Scholar 

  10. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Suppresion of spin relaxation in an InAs nanowire double quantum dot. cond-mat/0701054 (2007).

  11. Tyryshkin, A. M. et al. Electron spin coherence in Si. Physica E 35, 257–267 (2006).

    Article  CAS  Google Scholar 

  12. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  13. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Article  Google Scholar 

  14. Friesen, M. et al. Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301(R) (2003).

    Article  Google Scholar 

  15. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  16. Biercuk, M. J., Garaj, S., Mason, N., Chow, J. M. & Marcus, C. M. Gate-defined quantum dots on carbon nanotubes. Nano Lett. 5, 1267–1271 (2005).

    Article  CAS  Google Scholar 

  17. Sapmaz, S., Meyer, C., Beliczynski, P., Jarillo-Herrero, P. & Kouwenhoven, L. P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350–1355 (2006).

    Article  CAS  Google Scholar 

  18. Gräber, M. R. et al. Molecular states in carbon nanotube double quantum dots. Phys. Rev. B 74, 075427 (2006).

    Article  Google Scholar 

  19. Chan, V. C. et al. Ion implanted Si:P double dot with gate tunable interdot coupling. J. Appl. Phys. 100, 106104 (2006).

    Article  Google Scholar 

  20. Zhong, Z., Fang, Y., Lu, W. & Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 5, 1143–1146 (2005).

    Article  CAS  Google Scholar 

  21. Klein, L. J., Savage, D. E. & Eriksson, M. A. Coulomb blockade and Kondo effect in a few-electron silicon/silicon–germanium quantum dot. Appl. Phys. Lett. 90, 033103 (2007).

    Article  Google Scholar 

  22. Berer, T. et al. Lateral quantum dots in Si/SiGe realized by a Schottky split-gate technique. Appl. Phys. Lett. 88, 162112 (2006).

    Article  Google Scholar 

  23. Sakr, M. R., Jiang, H. W., Yablonovitch, E. & Croke, E. T. Fabrication and characterization of electrostatic Si/SiGe quantum dots with an integrated read-out channel. Appl. Phys. Lett. 87, 223104 (2005).

    Article  Google Scholar 

  24. van der Wiel, W. G., De Franceschi, S., Elzermann, J. M., Fujisawa, T., Tarucha, S. & Kouwenhoven, L. P. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).

    Article  CAS  Google Scholar 

  25. Elzerman, J. M. et al. Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003).

    Article  Google Scholar 

  26. Biercuk, M. J. et al. Charge sensing in carbon-nanotube quantum dots on microsecond timescales. Phys. Rev. B 73, 201402(R) (2006).

    Article  Google Scholar 

  27. DiCarlo, L. et al. Differential charge sensing and charge delocalization in a tunable double quantum dot. Phys. Rev. Lett. 92, 226801 (2004).

    Article  CAS  Google Scholar 

  28. Bulaev, D. V. & Loss, D. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).

    Article  Google Scholar 

  29. Heiss, D. et al. Observation of extremely slow spin relaxation in self-assembled quantum dots. cond-mat/0705.1466 (2007).

  30. Schäffler, F. High-mobility Si and Ge structures. Semicond. Sci. Technol. 12, 1515–1549 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. DiCarlo and E. A. Laird for experimental assistance and helpful discussions. C.M.L. acknowledges support from the Defense Advanced Research Projects Agency and Samsung Electronics. C.M.M. acknowledges support from the Disruptive Technology Office. H.O.H.C. acknowledges support from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and H.O.H.C. performed the experiments. Y.H. and J.X. fabricated the devices. Y.H., H.O.H.C., D.J.R., C.M.L. and C.M.M. analysed the data and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Charles M. Lieber or Charles M. Marcus.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Churchill, H., Reilly, D. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotech 2, 622–625 (2007). https://doi.org/10.1038/nnano.2007.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing