Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An atomic-resolution nanomechanical mass sensor

Abstract

Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency1. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators2,3,4,5,6, which have been operated as precision force7, position8,9 and mass sensors10,11,12,13,14,15. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 × 10−25 kg Hz−1/2 or, equivalently, 0.40 gold atoms Hz−1/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise16,17 measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanomechanical mass spectrometer device and schematics.
Figure 2: Frequency shifts during mass loading for a nanotube mass sensor and quartz crystal microbalance.
Figure 3: Atomic mass shot noise.

Similar content being viewed by others

References

  1. Sauerbrey, G. Verwendung von schwingquarzen zur wagung dunner schichten und zur mikrowagung. Zeitschrift Fur Physik 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  2. Cleland, A. N. & Roukes, M. L. Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996).

    Article  CAS  Google Scholar 

  3. Poncharal, P., Wang, Z. L., Ugarte, D. & de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999).

    Article  CAS  Google Scholar 

  4. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  5. Sazonova, V. et al. A tuneable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  6. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  7. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  8. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  CAS  Google Scholar 

  9. Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    Article  CAS  Google Scholar 

  10. Ekinci, K. L., Huang, X. M. H. & Roukes, M. L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84, 4469–4471 (2004).

    Article  CAS  Google Scholar 

  11. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  CAS  Google Scholar 

  12. Ilic, B. et al. Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95, 3694–3703 (2004).

    Article  CAS  Google Scholar 

  13. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  CAS  Google Scholar 

  14. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D. & Zettl, A. Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006).

    Article  CAS  Google Scholar 

  15. Feng, X. L., He, R. R., Yang, P. D. & Roukes, M. L. Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007).

    Article  CAS  Google Scholar 

  16. Schottky, W. Regarding spontaneous current fluctuation in different electricity conductors. Annalen Der Physik 57, 541–567 (1918).

    Article  Google Scholar 

  17. Hartmann, C. A. U¨ber die bestimmung des elektrischen elementarquantums aus dem schroteffekt. Ann. Phys. (Leipz.) 65, 51–78 (1921).

    Article  CAS  Google Scholar 

  18. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  CAS  Google Scholar 

  19. Cleland, A. N. Foundations of Nanomechanics (Springer-Verlag, New York, 2003).

    Book  Google Scholar 

  20. Hutchison, J. L. et al. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39, 761–770 (2001).

    Article  CAS  Google Scholar 

  21. Jensen, K., Weldon, J., Garcia, H. & Zettl, A. Nanotube radio. Nano Lett. 7, 3508–3511 (2007).

    Article  CAS  Google Scholar 

  22. de Heer, W. A., Chatelain, A. & Ugarte, D. A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995).

    Article  CAS  Google Scholar 

  23. Purcell, S. T., Vincent, P., Journet, C. & Binh, V. T. Tuning of nanotube mechanical resonances by electric field pulling. Phys. Rev. Lett. 89, 276103 (2002).

    Article  CAS  Google Scholar 

  24. van der Ziel, A. Noise. (ed., Everitt, W. L.) (Prentice-Hall, New York, 1954).

    Google Scholar 

  25. Langmuir, I. Chemical reactions at low pressures. J. Am. Chem. Soc. 37, 1139–1167 (1915).

    Article  CAS  Google Scholar 

  26. Arthur, J. R. & Cho, A. Y. Adsorption and desorption kinetics of Cu and Au on (0001) graphite. Surf. Sci. 36, 641–660 (1973).

    Article  CAS  Google Scholar 

  27. Newland, D. E. An Introduction to Random Vibrations and Spectral Analysis (Longman, New York, 1984).

    Google Scholar 

  28. Regan, B. C., Aloni, S., Ritchie, R. O., Dahmen, U. & Zettl, A. Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004).

    Article  CAS  Google Scholar 

  29. Karas, M., Bachmann, D., Bahr, U. & Hillenkamp, F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int. J. Mass Spectrom. Ion Processes 78, 53–68 (1987).

    Article  CAS  Google Scholar 

  30. Fenn, J., Mann, M., Meng, C., Wong, S. & Whitehouse, C. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Aleman for technical assistance. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract DE-AC02-05CH11231, which provided nanotube synthesis, detailed TEM characterization and UHV testing of the nanomechanical mass spectrometer. It was also supported by the National Science Foundation within the Centre of Integrated Nanomechanical Systems, under grant EEC-0425914, which provided for design and assembly of the spectrometer. K.K acknowledges support from a Samsung Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.J. and A.Z. conceived the experiments and co-wrote the paper. K.J. designed and constructed the experimental apparatus, prepared nanotube samples, recorded the data and analysed the results. K.K. helped with apparatus construction and sample preparation

Corresponding author

Correspondence to K. Jensen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech 3, 533–537 (2008). https://doi.org/10.1038/nnano.2008.200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing