Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly conducting graphene sheets and Langmuir–Blodgett films

Abstract

Graphene is an intriguing material with properties that are distinct from those of other graphitic systems1,2,3,4,5. The first samples of pristine graphene were obtained by ‘peeling off’2,6 and epitaxial growth5,7. Recently, the chemical reduction of graphite oxide was used to produce covalently functionalized single-layer graphene oxide8,9,10,11,12,13,14,15. However, chemical approaches for the large-scale production of highly conducting graphene sheets remain elusive. Here, we report that the exfoliation–reintercalation–expansion of graphite can produce high-quality single-layer graphene sheets stably suspended in organic solvents. The graphene sheets exhibit high electrical conductance at room and cryogenic temperatures. Large amounts of graphene sheets in organic solvents are made into large transparent conducting films by Langmuir–Blodgett assembly in a layer-by-layer manner. The chemically derived, high-quality graphene sheets could lead to future scalable graphene devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemically derived single-layer GS from the solution phase.
Figure 2: Comparison of GS and GO sheets.
Figure 3: Electrical characterization of a single GS.
Figure 4: Large-scale Langmuir-Blodgett (LB) films of GS.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  4. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  5. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  7. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  8. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  9. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    Article  CAS  Google Scholar 

  10. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  11. Gilje, S., Han, S., Wang, M. S., Wang, K. L. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    Article  CAS  Google Scholar 

  12. Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  13. Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  CAS  Google Scholar 

  14. Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  15. Bourlinos, A. B. et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acides. Langmuir 19, 6050–6055 (2003).

    Article  CAS  Google Scholar 

  16. Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  17. Tan, Y. W., Zhang, Y. B., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. 148, 15–18 (2007).

    Google Scholar 

  18. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  19. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  20. Schniepp, H. C. et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535–8539 (2006).

    Article  CAS  Google Scholar 

  21. Yu, A. P., Ramesh, P., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Graphite nanoplatelet–epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7565–7569 (2007).

    Article  CAS  Google Scholar 

  22. Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    Article  CAS  Google Scholar 

  23. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  24. Greinke, R. A. et al. Expandable graphite and method. US patent 6416815 B2 (2002).

  25. Han, J. H., Cho, K. W., Lee, K.-H. & Kim, H. Porous graphite matrix for chemical heat pumps. Carbon 36, 1801–1810 (1998).

    Article  CAS  Google Scholar 

  26. Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibres. Science 305, 1447–1450 (2004).

    Article  CAS  Google Scholar 

  27. Liu, Z. H., Wang, Z. M., Yang, X. J. & Ooi, K. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 18, 4926–4932 (2002).

    Article  CAS  Google Scholar 

  28. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  29. Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D., Rojas-Cervantes, M. L. & Martin-Aranda, R. M. Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995).

    Article  CAS  Google Scholar 

  30. Kuznetsova, A. et al. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem. Phys. Lett. 321, 292–296 (2000).

    Article  CAS  Google Scholar 

  31. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Graftech for providing expandable graphite samples. This work was supported in part by Intel, the Microelectronics Advanced Research Corporation Materials, Structures and Devices (MARCO MSD) Focus Centre and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Contributions

H.D. and X.L. conceived and designed the experiments. X.L. and G.Z. performed the experiments and analysed the data. H.D. and X.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hongjie Dai.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhang, G., Bai, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech 3, 538–542 (2008). https://doi.org/10.1038/nnano.2008.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing