Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The origins and limits of metal–graphene junction resistance

Abstract

A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal–graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain unclear. Here, we report that the contact resistance in a palladium–graphene junction exhibits an anomalous temperature dependence, dropping significantly as temperature decreases to a value of just 110 ± 20 Ω µm at 6 K, which is two to three times the minimum achievable resistance. Using a combination of experiment and theory we show that this behaviour results from carrier transport in graphene under the palladium contact. At low temperature, the carrier mean free path exceeds the palladium–graphene coupling length, leading to nearly ballistic transport with a transfer efficiency of ~75%. As the temperature increases, this carrier transport becomes less ballistic, resulting in a considerable reduction in efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of palladium–graphene contact resistance using the transfer length method (TLM).
Figure 2: Temperature dependence of contact resistance.
Figure 3: Carrier transport processes at the palladium–graphene junction and gate dependence of Dirac-point energies in graphene under palladium and in the channel.
Figure 4: Transmission efficiency TMG, determined using Matthiessen's rule.

Similar content being viewed by others

References

  1. Meric, I., Baklitskaya, N., Kim, P. & Shepard, K. L. RF performance of top-gated graphene field-effect transistors. IEEE International Electron Devices Meeting IEDM.2008.4796738, San Francisco, California (2008).

  2. Lin, Y.-M. et al. 100 GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  CAS  Google Scholar 

  3. Moon, J. S. et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H–SiC substrates. IEEE Electron. Device Lett. 30, 650–652 (2009).

    Article  CAS  Google Scholar 

  4. Xia, F., Farmer, D. B., Lin, Y.-M. & Avouris, Ph. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  CAS  Google Scholar 

  5. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  6. Danneau, R. et al. Shot noise in ballistic graphene. Phys. Rev. Lett. 100, 196802 (2008).

    Article  CAS  Google Scholar 

  7. Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene—analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting IEDM.2009.5424297, Baltimore, Maryland (2009).

  8. Blake, P. et al. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 149, 1068–1071 (2009).

    Article  CAS  Google Scholar 

  9. Russo, S., Craciun, M. F., Yamamoto, M., Morpurgo, A. F. & Tarucha, S. Contact resistance in graphene-based devices. Physica E 42, 677–679 (2010).

    Article  CAS  Google Scholar 

  10. Venugopal, A., Colombo, L. & Vogel, E. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010).

    Article  Google Scholar 

  11. Datta, S. Electronic Transport in Mesoscopic Systems Ch. 2 (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  12. Anantram, M. P., Datta, S. & Xue, Y. Coupling of carbon nanotubes to metallic contacts. Phys. Rev. B 61, 14219–14224 (2000).

    Article  CAS  Google Scholar 

  13. Nemec, N., Tomanek, D. & Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802 (2006).

    Article  Google Scholar 

  14. Nemec, N., Tomanek, D. & Cuniberti, G. Modeling extended contacts for nanotube and graphene devices. Phys. Rev. B 77, 125420 (2008).

    Article  Google Scholar 

  15. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  CAS  Google Scholar 

  16. Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009).

    Article  Google Scholar 

  17. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in graphene. Phys. Rev. B 78, 121402(R) (2008).

    Article  Google Scholar 

  18. Golizadeh-Mojarad, R. & Datta, S. Effect of contact induced states on minimum conductivity in graphene. Phys. Rev. B 79, 085410 (2009).

    Article  Google Scholar 

  19. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  CAS  Google Scholar 

  20. Cheianov, V. V. & Fal'ko, V. Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74, 041403(R) (2006).

    Article  Google Scholar 

  21. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  22. Cheianov, V. V., Fal'ko, V. & Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007).

    Article  CAS  Google Scholar 

  23. Fogler, M. M., Novikov, D. S., Glazman, L. I. & Shkovskii, B. I. Effect of disorder on a graphene p–n junction. Phys. Rev. B 77, 075420 (2008).

    Article  Google Scholar 

  24. Cayssol, J., Huard, B., & Goldhaber-Gordon D. Contact resistance and shot noise in graphene transistors. Phys. Rev. B 79, 075428 (2009).

    Article  Google Scholar 

  25. Sonin, E. B. Effect of Klein tunneling on conductance and shot noise in ballistic graphene. Phys. Rev. B 79, 195438 (2009).

    Article  Google Scholar 

  26. Low, T., Hong, S., Appenzeller, J., Datta, S. & Lundstrom, M. S. Conductance asymmetry of graphene p–n junction. IEEE Trans. Electron. Dev. 56, 1292–1299 (2009).

    Article  CAS  Google Scholar 

  27. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article  CAS  Google Scholar 

  28. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 1998).

    Google Scholar 

  29. Kane, A. A. et al. Graphitic electrical contacts to metallic single-walled carbon nanotubes using Pt electrodes. Nano Lett. 9, 3586–3591 (2009).

    Article  CAS  Google Scholar 

  30. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nature Nanotech. 5, 858–862 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B. Ek and J. Bucchignano for technical assistance and the Defense Advanced Research Projects Agency for partial financial support through the Carbon Electronics for Radio-frequency Applications program (contract FA8650-08-C-7838). F.X. is indebted to C.Y. Sung for his encouragement. V.P. gratefully acknowledges stimulating discussions with J. Tersoff.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Fengnian Xia or Phaedon Avouris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, F., Perebeinos, V., Lin, Ym. et al. The origins and limits of metal–graphene junction resistance. Nature Nanotech 6, 179–184 (2011). https://doi.org/10.1038/nnano.2011.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing