Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Memristive devices for computing

Abstract

Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The driving forces, electrical characteristics, transport mechanisms of ions and electrons for the switching of anion-based devices.
Figure 2: Material selection criteria for high endurance and repeatability.
Figure 3: Switching of a traditional cation-based device (electrochemical metallization memory) with the cell stack of Pt/H2O/Ag.
Figure 4: Nonlinear switching dynamics.
Figure 5: Hybrid CMOS/memristor circuits.
Figure 6: Prospective applications of memristive circuits.
Figure 7: Device performance requirements for representative applications.

Similar content being viewed by others

References

  1. Chua, L. O. Memristor—missing circuit element. IEEE Trans. Circuit Theory CT-18, 507–519 (1971). This article contains the original theoretical description of memristors.

    Article  Google Scholar 

  2. Chua, L. O. & Kang, S. M. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).

    Article  Google Scholar 

  3. Chua, L. O. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  CAS  Google Scholar 

  4. Prodromakis, T., Toumazou, C. & Chua, L. Two centuries of memristors. Nature Mater. 11, 478–481 (2012).

    Article  CAS  Google Scholar 

  5. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008). This article first established the link between the memristor theory and experimental results.

    Article  CAS  Google Scholar 

  6. Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    Article  CAS  Google Scholar 

  7. Dearnaley, G., Stoneham, A. M. & Morgan, D. V. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1191 (1970).

    Article  Google Scholar 

  8. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  9. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  10. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (June, 2008).

    Article  CAS  Google Scholar 

  11. Kyung Min, K., Doo Seok, J. & Cheol Seong, H. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).

    Article  CAS  Google Scholar 

  12. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Article  CAS  Google Scholar 

  13. Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).

    Article  Google Scholar 

  14. McCreery, R. L. & Bergren, A. J. Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication. Adv. Mater. 21, 4303–4322 (2009).

    Article  CAS  Google Scholar 

  15. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal–insulator transitions. Ann. Rev. Mater. Res. 41, 337–367 (2011).

    Article  CAS  Google Scholar 

  16. Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    Article  CAS  Google Scholar 

  17. Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    Article  CAS  Google Scholar 

  18. Akinaga, H. & Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010).

    Article  CAS  Google Scholar 

  19. Waser, R. (ed.) Nanoelectronics and Information Technology 3rd edn, (Wiley, 2012).

    Google Scholar 

  20. Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  CAS  Google Scholar 

  21. Seo, S. et al. Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004).

    Article  CAS  Google Scholar 

  22. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006). This article demonstrated scalability of oxide-based switching down to individual dislocations, that is, <1 nm.

    Article  CAS  Google Scholar 

  23. Beck, A., Bednorz, J. G., Gerber, C., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000).

    Article  CAS  Google Scholar 

  24. Liu, S. Q., Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

    Article  CAS  Google Scholar 

  25. Quintero, M., Levy, P., Leyva, A. G. & Rozenberg, M. J. Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98, 116601 (2007).

    Article  CAS  Google Scholar 

  26. Choi, B. J. et al. Nitride memristors. Appl. Phys. A 109, 1–4 (2012).

    Article  CAS  Google Scholar 

  27. Goux, L. et al. Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512–024517 (2009).

    Article  CAS  Google Scholar 

  28. Jeong, D. S., Schroeder, H. & Waser, R. Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochemi. Solid State Lett. 10, G51–G53 (2007).

    Article  CAS  Google Scholar 

  29. Yang, J. J. et al. Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102, 785–789 (2011).

    Article  CAS  Google Scholar 

  30. Yang, J. J. et al. Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034–4038 (2010).

    Article  CAS  Google Scholar 

  31. Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2003).

    Article  CAS  Google Scholar 

  32. Standley, B. et al. Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008).

    Article  CAS  Google Scholar 

  33. Yao, J., Zhong, L., Natelson, D. & Tour, J. M. Silicon oxide: A non-innocent surface for molecular electronics and nanoelectronics studies. J. Am. Chem. Soc. 133, 941–948 (2011).

    Article  CAS  Google Scholar 

  34. Gomez-Marlasca, F., Ghenzi, N., Rozenberg, M. J. & Levy, P. Understanding electroforming in bipolar resistive switching oxides. Appl. Phys. Lett. 98, 042901–042903 (2011).

    Article  CAS  Google Scholar 

  35. Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).

    Article  CAS  Google Scholar 

  36. Jeong, D. S., Schroeder, H., Breuer, U. & Waser, R. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere J. Appl. Phys. 104, 123716 (2008).

    Article  CAS  Google Scholar 

  37. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

  38. Kwon, D. H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010). This article first demonstrated that the channel structure of TiO 2 is a crystalline suboxide, Magnéli phase, Ti 4 O 7.

    Article  CAS  Google Scholar 

  39. Nagashima, K. et al. Intrinsic mechanisms of memristive switching. Nano Lett. 11, 2114–2118 (2011).

    Article  CAS  Google Scholar 

  40. Kim, K. M. et al. Collective motion of conducting filaments in Pt/n-type TiO2/p-Type NiO/Pt stacked resistance switching memory. Adv. Funct. Mater. 21, 1587–1592 (2011).

    Article  CAS  Google Scholar 

  41. He, J. et al. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Mater. 55, 4325–4337 (2007).

    Article  CAS  Google Scholar 

  42. Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007).

    Article  CAS  Google Scholar 

  43. Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).

    Article  CAS  Google Scholar 

  44. Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010).

    Article  CAS  Google Scholar 

  45. Yajima, T. et al. Spatial redistribution of oxygen ions in oxide resistance switching device after forming process. Jpn. J. Appl. Phys. 49, 060215 (2010).

    Article  CAS  Google Scholar 

  46. Magyari-Köpe, B., Tendulkar, M., Park, S-G., Lee, H. D. & Nishi, Y. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7 Ca0.3 MnO3 . Nanotechnology 22, 254029 (2011).

    Article  CAS  Google Scholar 

  47. Jameson, J. R. & Nishi, Y. Role of hydrogen ions in TiO2-based memory devices. Integrated Ferroelectrics 124, 112–118 (2011).

    Article  CAS  Google Scholar 

  48. Tsuruoka, T. et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2011).

    Article  CAS  Google Scholar 

  49. Strachan, J. P. et al. The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology 22, 254015 (2011).

    Article  CAS  Google Scholar 

  50. Kim, K. M., Choi, B. J., Shin, Y. C., Choi, S. & Hwang, C. S. Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91, 012907 (2007).

    Article  CAS  Google Scholar 

  51. Chang, S. H. et al. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl. Phys. Lett. 92, 183507 (2008).

    Article  CAS  Google Scholar 

  52. Kim, K. M., Choi, B. J., Song, S. J., Kim, G. H. & Hwang, C. S. Filamentary resistive switching localized at cathode interface in NiO thin films. J. Electrochem. Soc. 156, G213–G216 (2009).

    Article  CAS  Google Scholar 

  53. Baikalov, A. et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).

    Article  CAS  Google Scholar 

  54. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Adv. Mater. 22, 4819–4822 (2010).

    Article  CAS  Google Scholar 

  55. Feng, M., Yang, J. J., Borghetti, J., Medeiros-Ribeiro, G. & Williams, R. S. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology 22, 254007 (2011).

    Article  CAS  Google Scholar 

  56. Yang, J. J., Borghetti, J., Murphy, D., Stewart, D. R. & Williams, R. S. A family of electronically reconfigurable nanodevices. Adv. Mater. 21, 3754–3758 (2009).

    Article  CAS  Google Scholar 

  57. Yoon, K. J. et al. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell. Nanotechnology 23, 185202 (2012).

    Article  CAS  Google Scholar 

  58. Ielmini, D., Bruchhaus, R. & Waser, R. Thermochemical resistive switching: materials, mechanisms, and scaling projections. Phase Transit. 84, 570–602 (2011).

    Article  CAS  Google Scholar 

  59. Karg, S. F. et al. Transition-metal-oxide-based resistance-change memories. IBM J. Res. Dev. 52, 481–492 (2008).

    Article  CAS  Google Scholar 

  60. Jiang, W. et al. Local heating-induced plastic deformation in resistive switching devices. J. Appl. Phys. 110, 054514 (2011).

    Article  CAS  Google Scholar 

  61. Russo, U. et al. in Electron Devices Meeting, 2007. IEDM 2007. IEEE Int. 775–778 (IEEE, 2007).

    Book  Google Scholar 

  62. Borghetti, J. et al. Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106, 124504 (2009).

    Article  CAS  Google Scholar 

  63. Menzel, S. et al. Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011).

    Article  CAS  Google Scholar 

  64. Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    Article  CAS  Google Scholar 

  65. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nature Commun. 3, 732 (2012).

    Article  CAS  Google Scholar 

  66. Johnson, S. L., Sundararajan, A., Hunley, D. P. & Strachan, D. R. Memristive switching of single-component metallic nanowires. Nanotechnology 21, 5 (2010).

    Google Scholar 

  67. Strukov, D., Alibart, F. & Stanley Williams, R. Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A 107, 509–518 (2012).

    Article  CAS  Google Scholar 

  68. Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

    Article  CAS  Google Scholar 

  69. Yao, J., Zhong, L., Natelson, D. & Tour, J. M. In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012).

    Article  CAS  Google Scholar 

  70. Chang, S. H. et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO Film. Phys. Rev. Lett. 102, 026801 (2009).

    Article  CAS  Google Scholar 

  71. Pickett, M. D., Borghetti, J., Yang, J. J., Medeiros-Ribeiro, G. & Williams, R. S. Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23, 1730–1733 (2011).

    Article  CAS  Google Scholar 

  72. Yang, J. J. et al. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010). This article first proposed memristive material selection criteria for high endurance and low variability.

    Article  CAS  Google Scholar 

  73. Goldfarb, I. et al. Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior. Appl. Phys. A 107, 1–11 (2012).

    Article  CAS  Google Scholar 

  74. Lee, M-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nature Mater. 10, 625–630 (2011). This article demonstrated >trillion switching cycles from an oxide memristive device.

    Article  CAS  Google Scholar 

  75. Lee, H. Y. et al. in Int. Electron Devices Meeting 2010 IEDM 2010. IEEE Int. 19.7.1–19.7.4 (IEEE, 2010).

    Google Scholar 

  76. Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976).

    Article  CAS  Google Scholar 

  77. West, W. C., Sieradzki, K., Kardynal, B. & Kozicki, M. N. Equivalent circuit modeling of the Ag vertical bar As0.24S0.36Ag0.40 vertical bar Ag system prepared by photodissolution of Ag. J. Electrochem. Soc. 145, 2971–2974 (1998).

    Article  CAS  Google Scholar 

  78. Lu, W., Jeong, D. S., Kozicki, M. & Waser, R. Electrochemical metallization cells-blending nanoionics into nanoelectronics? Mater. Res. Soc. Bull. 37, 124–130 (2012).

    Article  CAS  Google Scholar 

  79. Hasegawa, T., Terabe, K., Tsuruoka, T. & Aono, M. Atomic switch: Atom/ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 24, 252–267 (2012).

    Article  CAS  Google Scholar 

  80. Jo, S. H., Kim, K. H. & Lu, W. Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2009).

    Article  CAS  Google Scholar 

  81. Russo, U., Kamalanathan, D., Ielmini, D., Lacaita, A. L. & Kozicki, M. N. Study of multilevel programming in programmable metallization cell (PMC) memory. Electron Dev. IEEE Trans. on 56, 1040–1047 (2009).

    Article  CAS  Google Scholar 

  82. Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006).

    Article  CAS  Google Scholar 

  83. Wang, Z. et al. Resistive switching mechanism in ZnxCd1−xS nonvolatile memory devices. Electron Dev. Lett. IEEE 28, 14–16 (2007).

    Article  CAS  Google Scholar 

  84. Mitkova, M. & Kozicki, M. N. Mass transport in chalcogenide electrolyte films—materials and applications. J. Non-Cryst. Solids 352, 567–577 (2006).

    Article  CAS  Google Scholar 

  85. Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Mater. 11, 530–535 (2012).

    Article  CAS  Google Scholar 

  86. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005). This article demonstrated switching by the motion of a few atoms.

    Article  CAS  Google Scholar 

  87. Sakamoto, T. et al. Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007).

    Article  CAS  Google Scholar 

  88. Kever, T., Bottger, U., Schindler, C. & Waser, R. On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl. Phys. Lett. 91, 083506 (2007).

    Article  CAS  Google Scholar 

  89. Chen, C., Yang, Y. C., Zeng, F. & Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502–083503 (2010).

    Article  CAS  Google Scholar 

  90. Guan, W. H., Liu, M., Long, S. B., Liu, Q. & Wang, W. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008).

    Article  CAS  Google Scholar 

  91. Huang, R. et al. Resistive switching of silicon-rich-oxide featuring high compatibility with CMOS technology for 3D stackable and embedded applications. Appl. Phys. A 102, 927–931 (2011).

    Article  CAS  Google Scholar 

  92. Feng, P., Shong, Y. & Subramanian, V. A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. Electron Dev. Lett. IEEE 32, 949–951 (2012).

    Google Scholar 

  93. Guo, X., Schindler, C., Menzel, S. & Waser, R. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007).

    Article  CAS  Google Scholar 

  94. Tsuruoka, T., Terabe, K., Hasegawa, T. & Aono, M. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21, 425205 (2010).

    Article  CAS  Google Scholar 

  95. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  96. Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nature Nanotech. 7, 101–104 (2012).

    Article  CAS  Google Scholar 

  97. Jiang, A. Q. et al. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23, 1277–1281 (2011).

    Article  CAS  Google Scholar 

  98. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  99. Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2009).

    Article  CAS  Google Scholar 

  100. Chen, A. B. K., Kim, S. G., Wang, Y., Tung, W-S. & Chen, I. W. A size-dependent nanoscale metal–insulator transition in random materials. Nature Nanotech. 6, 237–241 (2011).

    Article  CAS  Google Scholar 

  101. Yang, Y., Ouyang, J., Ma, L., Tseng, R. J. H. & Chu, C. W. Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv. Funct. Mater. 16, 1001–1014 (2006).

    Article  CAS  Google Scholar 

  102. Lee, T. & Chen, Y. Organic resistive nonvolatile memory materials. Mater. Res. Soc. Bull. 37, 144–149 (2012).

    Article  CAS  Google Scholar 

  103. Cario, L., Vaju, C., Corraze, B., Guiot, V. & Janod, E. Electric-field-induced resistive switching in a family of Mott insulators: Towards a new class of RRAM memories. Adv. Mater. 22, 5193–5197 (2010).

    Article  CAS  Google Scholar 

  104. Inoue, I. H. & Rozenberg, M. J. Taming the Mott transition for a novel Mott transistor. Adv. Funct. Mater. 18, 2289–2292 (2008).

    Article  CAS  Google Scholar 

  105. Hasegawa, T. et al. Volatile/nonvolatile dual-functional atom transistor. Appl. Phys. Express 4, 015204 (2010).

    Article  CAS  Google Scholar 

  106. Xia, Q. et al. Two- and three-terminal resistive switches: Nanometer-scale memristors and memistors. Adv. Funct. Mater. 21, 2660–2665 (2011).

    Article  CAS  Google Scholar 

  107. Widrow, B. An adaptive “ADALINE” neuron using chemical “Memistors”. Stanford Electronics Laboratories Technical Report No. 1553–2 (1960).

    Google Scholar 

  108. Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    Article  CAS  Google Scholar 

  109. Cagli, C. et al. Resistive-switching crossbar memory based on Ni–NiO core–shell nanowires. Small 7, 2899–2905 (2011).

    Article  CAS  Google Scholar 

  110. Alibart, F., Gao, L. G., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).

    Article  CAS  Google Scholar 

  111. Strukov, D. B. & Williams, R. S. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009).

    Article  CAS  Google Scholar 

  112. Zhirnov, V. V. et al. Memory devices: Energy-space-time tradeoffs. Proc. IEEE 98, 2185–2200 (2010).

    Article  Google Scholar 

  113. Zhirnov, V. V., Meade, R., Cavin, R. K. & Sandhu, G. Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011).

    Article  CAS  Google Scholar 

  114. Mott, N. F. & Gurney, R. W. Electronic Processes in Ionic Crystals 2nd edn, (Dover, 1940).

    Google Scholar 

  115. Pickett, M. D. et al. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009).

    Article  CAS  Google Scholar 

  116. Ielmini, D., Nardi, F. & Balatti, S. Evidence for voltage-driven set/reset processes in bipolar switching RRAM. Electron Devices, IEEE Trans. on 59, 2049–2056 (2012).

    Article  CAS  Google Scholar 

  117. Noman, M., Jiang, W., Salvador, P., Skowronski, M. & Bain, J. Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A 102, 877–883 (2011).

    Article  CAS  Google Scholar 

  118. Strukov, D. & Williams, R. An ionic bottle for high-speed, long-retention memristive devices. Appl. Phys. A 102, 1033–1036 (2011).

    Article  CAS  Google Scholar 

  119. ITRS International Technology Roadmap for Semiconductors, 2011 edn; http://www.itrs.net

  120. Kim, K-H. et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012). This article experimentally demonstrated 1 Kb hybrid CMOS/memristor passive crossbar memory.

    Article  CAS  Google Scholar 

  121. Kawahara, A. et al. An 8 Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE Int. 432–434 (2012).

  122. Strukov, D. B. & Likharev, K. K. Reconfigurable nano-crossbar architectures, in Nanoelectronics (ed. Waser, R.) (in the press, 2012).

    Google Scholar 

  123. Snider, G. S. & Williams, R. S. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007).

    Article  CAS  Google Scholar 

  124. Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888 (2005).

    Article  CAS  Google Scholar 

  125. Kaeriyama, S. et al. A nonvolatile programmable solid-electrolyte nanometer switch. Solid-State Circuits, IEEE Journal of 40, 168–176 (2005).

    Article  Google Scholar 

  126. Young Yang, L., Zhiping, Z., Wanki, K., Gamal, A. E. & Wong, S. S. Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE Int. 406–408 (2012).

    Google Scholar 

  127. Xia, Q. F. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009). This article experimentally demonstrated 100 nm-gate scale hybrid CMOS/memristor logic.

    Article  CAS  Google Scholar 

  128. Borghetti, J. et al. 'Memristive' switches enable 'stateful' logic operations via material implication. Nature 464, 873–876 (2010).

    Article  CAS  Google Scholar 

  129. Holmes, A. J. et al. Use of a-Si:H memory devices for non-volatile weight storage in artificial neural networks. J. Non-Cryst. Solids 164–166, Part 2, 817–820 (1993).

    Article  Google Scholar 

  130. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  131. Alibart, F. et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010).

    Article  CAS  Google Scholar 

  132. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

    Article  CAS  Google Scholar 

  133. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Mater. 10, 591–595 (2011).

    Article  CAS  Google Scholar 

  134. Likharev, K. K. CrossNets: Neuromorphic hybrid CMOS/nanoelectronic networks. Sci. Adv. Mater. 3, 322–331 (2011).

    Article  CAS  Google Scholar 

  135. Strukov, D. B. & Likharev, K. K. Defect-tolerant architectures for nanoelectronic crossbar memories. J. Nanosci. Nanotechnol. 7, 151–167 (2007).

    CAS  Google Scholar 

  136. Turel, O., Lee, J. H., Ma, X. L. & Likharev, K. K. Neuromorphic architectures for nanoetectronic circuits. Int. J. Circ. Theory App. 32, 277–302 (2004).

    Article  Google Scholar 

  137. Lee, J. H. & Likharev, K. K. Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circuit Theory and Applications 35, 239–264 (2007).

    Article  Google Scholar 

  138. Strachan, J. P., Torrezan, A. C., Medeiros-Ribeiro, G. & Williams, R. S. Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22, 505402 (2011).

    Article  CAS  Google Scholar 

  139. Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G. & Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011).

    Article  CAS  Google Scholar 

  140. Chen, A. et al. Non-volatile resistive switching for advanced memory applications, in IEEE Int. Electron Devices Meeting 2005, Technical Digest 765–768 (IEEE, 2005).

    Google Scholar 

  141. Yang, J. J. et al. Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012).

    Article  CAS  Google Scholar 

  142. Govoreanu, B. et al. 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. Electron Devices Meeting (IEDM), 2011 IEEE Int. 31.36.31–31.36.34 (2011). This article demonstrated functioning memristive devices at the 10 nm scale.

  143. Likharev, K., Mayr, A., Muckra, I. & Türel, Ö. CrossNets: High-performance neuromorphic architectures for CMOL circuits. Ann. NY Acad. Sci. 1006, 146–163 (2003).

    Article  CAS  Google Scholar 

  144. Lee, J. et al. Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications. Tech. Dig. IEEE Int. Electron Devices Meeting, 452–455 (2010).

  145. Kim, G. H. et al. Schottky diode with excellent performance for large integration density of crossbar resistive memory. Appl. Phys. Lett. 100, 213508 (2012).

    Article  CAS  Google Scholar 

  146. Puthentheradam, S., Schroder, D. & Kozicki, M. Inherent diode isolation in programmable metallization cell resistive memory elements. Appl. Phys. A 102, 817–826 (2011).

    Article  CAS  Google Scholar 

  147. Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nature Mater. 9, 403–406 (2010).

    Article  CAS  Google Scholar 

  148. Alexandrov, A. S. et al. Current-controlled negative differential resistance due to Joule heating in TiO2 . Appl. Phys. Lett. 99, 202104 (2011).

    Article  CAS  Google Scholar 

  149. Liu, X. et al. Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications. Nanotechnology 22, 475702 (2011).

    Article  CAS  Google Scholar 

  150. Chang, S. H. et al. Oxide double-layer nanocrossbar for ultrahigh-density bipolar resistive memory. Adv. Mater. 23, 4063–4067 (2011).

    Article  CAS  Google Scholar 

  151. Burr, G. W. et al. Large-scale (512 kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. VLSI Technology (VLSIT), 2012 Symposium on, 41–42 (IEEE, 2012).

    Chapter  Google Scholar 

  152. Szot, K. et al. TiO2 — a prototypical memristive material. Nanotechnology 22, 254001 (2011).

    Article  CAS  Google Scholar 

  153. Likharev, K. K. Hybrid CMOS/nanoelectronic circuits: Opportunities and challenges. J. Nanoelectron. Optoelectron. 3, 203–230 (2008).

    Article  Google Scholar 

  154. Strukov, D. B. & Williams, R. S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl Acad. Sci. USA 106, 20155–20158 (2009).

    Article  CAS  Google Scholar 

  155. Dong, X. Y., Xu, C., Xie, Y. & Jouppi, N. P. NVSim: A circuit-level performance, energy, and area model for emerging nonvolatile memory. IEEE Trans. on Computer-Aided Des. Integrated Cir. Sys. 31, 994–1007 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to our scientific colleagues H. Akinaga, M. Aono, A. Chen, D. M. Chen, I. W. Chen, L. O. Chua, R. Dittmann, T. Hasegawa, R. Huang, C. S. Hwang, D. Ielmini, S. M. Kang, M. N. Kozicki, K. K. Likharev, M. Liu, W. Lu, T. P. Ma, M. J. Marinella, R. L. MccReery, S. Menzel, T. W. Noh, S. S. P. Parkin, L. P. Shi, M. Skowronski, J. M. Tour, I. Valov, M. Di Ventra, P. H. S. Wang, R. Waser, Y. Yang and V. Zhirnov for their insightful comments and valuable suggestions on the work of this Review. None of this memristor work would have succeeded without our H. P. Labs former and current colleagues, especially R. S. Williams, G. S. Snider, and certainly P. J. Kuekes, and we thank A. M. Bratkovsky, Y. Chen, B. J. Choi, I. Goldfarb, G. Medeiros-Ribeiro, F. Miao, J. H. Nickel, D. A. A. Ohlberg, M. D. Pickett, J. P. Strachan, A. Torrezan, Q. F. Xia, S. Y. Wang, W. Wu, W. Yi and M-X. Zhang for their repeated contributions to the memristor field and to our own understanding of this work and this Review. D. B. Strukov is supported by the Air Force Office of Scientific Research (AFOSR) under the MURI grant FA9550-12-1-0038.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Joshua Yang, Dmitri B. Strukov or Duncan R. Stewart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Memristive devices for computing (PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Strukov, D. & Stewart, D. Memristive devices for computing. Nature Nanotech 8, 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing