Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular-sized fluorescent nanodiamonds

Abstract

Doping of carbon nanoparticles with impurity atoms is central to their application1,2. However, doping has proven elusive for very small carbon nanoparticles because of their limited availability and a lack of fundamental understanding of impurity stability in such nanostructures3. Here, we show that isolated diamond nanoparticles as small as 1.6 nm, comprising only 400 carbon atoms, are capable of housing stable photoluminescent colour centres, namely the silicon vacancy (SiV)4,5. Surprisingly, fluorescence from SiVs is stable over time, and few or only single colour centres are found per nanocrystal. We also observe size-dependent SiV emission supported by quantum-chemical simulation of SiV energy levels in small nanodiamonds. Our work opens the way to investigating the physics and chemistry of molecular-sized cubic carbon clusters and promises the application of ultrasmall non-perturbative fluorescent nanoparticles as markers in microscopy and sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of SiV centre in diamond.
Figure 2: Photoluminescence analysis of the meteoric nanodiamonds.
Figure 3: HRTEM analysis of meteoritic nanodiamonds.
Figure 4: FCS measurement of luminescent meteoritic nanodiamonds and a dye molecule (Rhodamine 6G (Rh 6G)).
Figure 5: Detailed analysis of a fluorescent spot presumably containing only few emitters.

Similar content being viewed by others

References

  1. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotech. 7, 11–23 (2012).

    Article  CAS  Google Scholar 

  2. Hui, Y. Y., Cheng, C-L. & Chang, H-C. Nanodiamonds for optical bioimaging. J. Phys. 43, 374021 (2010).

    Google Scholar 

  3. Barnard, A. S. & Sternberg, M. Substitutional nitrogen in nanodiamond and Bucky-diamond particles. J. Phys. Chem. B 109, 17107–17112 (2005).

    Article  CAS  Google Scholar 

  4. Wang, C., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B 39, 37–41 (2006).

    Article  Google Scholar 

  5. Neu, E., Agio, M. & Becher, C. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express 20, 19956–19971 (2012).

    Article  CAS  Google Scholar 

  6. Evanko, D. The new fluorescent probes on the block. Nature Methods 5, 218–219 (2008).

    Article  CAS  Google Scholar 

  7. Biju, V., Itoh, T., Anas, A., Sujith, A. & Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 391, 2469–2495 (2008).

    Article  CAS  Google Scholar 

  8. Taylor, A., Wilson, K. M., Murray, P., Fernig, D. G. & Lévy, R. Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem. Soc. Rev. 41, 2707–2717 (2012).

    Article  CAS  Google Scholar 

  9. Barnard, A. S., Vlasov, I. I. & Ralchenko, V. G. Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J. Mater. Chem. 19, 360–365 (2009).

    Article  CAS  Google Scholar 

  10. Raty, J-Y., Galli, G., Bostedt, C., van Buuren, T. W. & Terminello, L. J. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 90, 037401 (2003).

    Article  Google Scholar 

  11. Bolker, A., Saguy, C., Tordjman, M. & Kalish, R. Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites. Phys. Rev. B 88, 035442 (2013).

    Article  Google Scholar 

  12. Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    Article  CAS  Google Scholar 

  13. Vlasov, I. I. et al. Nanodiamond photoemitters based on strong narrow-band luminescence from silicon-vacancy defects. Adv. Mater. 21, 808–812 (2009).

    Article  CAS  Google Scholar 

  14. Lewis, R. S., Anders, E. & Draine, B. T. Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339, 117–121 (1989).

    Article  CAS  Google Scholar 

  15. Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. R. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996).

    Article  CAS  Google Scholar 

  16. Shiryaev, A. A. et al. Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim. Cosmochim. Acta 75, 3155–3165 (2011).

    Article  CAS  Google Scholar 

  17. Goss, J. P., Jones, R., Breuer, S. J., Briddon, P. R. & Öberg, S. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett. 77, 3041–3044 (1996).

    Article  CAS  Google Scholar 

  18. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  19. Chang, Y. K. et al. Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377–5380 (1999).

    Article  CAS  Google Scholar 

  20. Berg, T. et al. Quantum confinement observed in the X-ray absorption spectrum of size distributed meteoritic nanodiamonds. J. Appl. Phys. 104, 064303 (2008).

    Article  Google Scholar 

  21. Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58, 459–470 (1994).

    Article  CAS  Google Scholar 

  22. Clark, C. D., Kanda, H., Kiflawi, I. & Sittas, G. Silicon defects in diamond. Phys. Rev. B 51, 16681–16688 (1995).

    Article  CAS  Google Scholar 

  23. Neu, E. et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    Article  Google Scholar 

  24. Sternschulte, H., Thonke, K., Sauer, R., Münzinger, P. & Michler, P. 1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. Phys. Rev. B 50, 14554–14560 (1994).

    Article  CAS  Google Scholar 

  25. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

    Article  CAS  Google Scholar 

  26. Neugart, F. et al. Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591 (2007).

    Article  CAS  Google Scholar 

  27. Kitson, S. C., Jonsson, P., Rarity, J. G. & Tapster, P. R. Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. 58, 620–627 (1998).

    Article  CAS  Google Scholar 

  28. Neu, E. et al. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl. Phys. Lett. 98, 243107 (2011).

    Article  Google Scholar 

  29. Gali, A. & Maze, J. R. An ab initio study on split silicon-vacancy defect in diamond: electronic structure and related properties. Preprint at http://arXiv.org/pdf/1310.2137 (2013).

  30. Gali, A. Time-dependent density functional study on the excitation spectrum of point defects in semiconductors. Phys. Status Solidi B 248, 1337–1346 (2011).

    Article  CAS  Google Scholar 

  31. Iakoubovskii, K., Adriaenssens, G. J., Dogadkin, N. N. & Shiryaev, A. A. Optical characterization of some irradiation-induced centers in diamond. Diam. Relat. Mater. 10, 18–26 (2001).

    Article  CAS  Google Scholar 

  32. Gendron, P-O., Avaltroni, F. & Wilkinson, K. J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient–nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc. 18, 1093–1101 (2008).

    Article  CAS  Google Scholar 

  33. Müller, C. B. et al. Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL Eur. Lett. 83, 46001 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Russian Foundation for Basic Research (RFBR) grants nos 11-02-01432, 12-05-00208 and 12-03-00787, a grant from Russian Academy of Science (RAS) programme no. 24, a grant of the President of the Russian Federation for leading scientific schools (no. 3076.2012.2), an National Institutes of Health (NIH) grant (no. C09-00053), the European Commission, EU FP7 grants Diamond based atomic nanotechnologies (DIAMANT) and Development of diamond intracellular nanoprobes for oncogen transformation dynamics monitoring in living cells (DINAMO), as well as the European Research Council (ERC) (via project Spin Quantum Technologies (SQUTEC) Biology and Quantum (BioQ)), the Deutsche Forschungsgemeinschaft (DFG) (via Sonderforschungsbereiches (SFB) 716) and the Volkswagenstiftung.

Author information

Authors and Affiliations

Authors

Contributions

I.V., J.W., P.H. and F.J. designed and coordinated the experiment. I.V., A.A.S., L.F.S., A.V.F., O.I.L., V.I.K. and I.S. prepared and characterized the sample. U.K. and J.B. carried out the high-resolution electron microscopy. T.R., S.S. and S.Y.L. designed, set up and carried out fluorescence measurements. A.G., D.A. and M.V. carried out the calculations and analysed the simulation data. I.V., T.R., S.Y.L., A.G., P.H. and J.W. wrote the manuscript.

Corresponding author

Correspondence to Jörg Wrachtrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasov, I., Shiryaev, A., Rendler, T. et al. Molecular-sized fluorescent nanodiamonds. Nature Nanotech 9, 54–58 (2014). https://doi.org/10.1038/nnano.2013.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing