Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polycrystalline graphene and other two-dimensional materials

Abstract

Graphene, a single atomic layer of graphitic carbon, has attracted intense attention because of its extraordinary properties that make it a suitable material for a wide range of technological applications. Large-area graphene films, which are necessary for industrial applications, are typically polycrystalline — that is, composed of single-crystalline grains of varying orientation joined by grain boundaries. Here, we present a review of the large body of research reported in the past few years on polycrystalline graphene. We discuss its growth and formation, the microscopic structure of grain boundaries and their relations to other types of topological defect such as dislocations. The Review further covers electronic transport, optical and mechanical properties pertaining to the characterizations of grain boundaries, and applications of polycrystalline graphene. We also discuss research, still in its infancy, performed on other two-dimensional materials such as transition metal dichalcogenides, and offer perspectives for future directions of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental studies of polycrystalline graphene and extended defects.
Figure 2: Out-of-plane deformations and transformations of topological defects.
Figure 3: Growth of graphene grains and polycrystalline graphene by chemical vapour deposition.
Figure 4: Electronic transport across grain boundaries in graphene.
Figure 5: Mechanical properties of polycrystalline graphene.
Figure 6: Grain boundaries in binary two-dimensional materials.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  3. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  6. Novoselov, K. S. Nobel Lecture. Graphene: Materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    CAS  Google Scholar 

  7. Geim, A. K. Nobel Lecture. Random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011).

    CAS  Google Scholar 

  8. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    CAS  Google Scholar 

  9. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  10. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Google Scholar 

  11. Golberg, D. et al. Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010).

    CAS  Google Scholar 

  12. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    CAS  Google Scholar 

  13. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    CAS  Google Scholar 

  14. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    CAS  Google Scholar 

  15. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    CAS  Google Scholar 

  16. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100–103 (2013).

    CAS  Google Scholar 

  17. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968).

    Google Scholar 

  18. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). This is the first paper reporting systematic experimental investigation of polycrystalline graphene including atomic structure of grain boundaries.

    CAS  Google Scholar 

  19. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    CAS  Google Scholar 

  20. An, J. et al. Domain (grain) boundaries and evidence of 'twinlike' structures in chemically vapor deposited grown graphene. ACS Nano 5, 2433–2439 (2011).

    CAS  Google Scholar 

  21. Hirth, J. P. & Lothe, J. Theory of Dislocations (McGraw-Hill, 1968).

    Google Scholar 

  22. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Clarendon, 1995).

    Google Scholar 

  23. Nelson, D. R. Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, 2002).

    Google Scholar 

  24. Amelinckx, S. & Delavignette, P. Dislocation loops due to quenched-in point defects in graphite. Phys. Rev. Lett. 5, 50–51 (1960).

    Google Scholar 

  25. Delavignette, P. & Amelinckx, S. Dislocation patterns in graphite. J. Nucl. Mater. 5, 17–66 (1962).

    Google Scholar 

  26. Roscoe, C. & Thomas, J. M. The revelation of small-angle boundaries and forest dislocations in graphite monocrystals. Carbon 4, 383–390 (1966).

    CAS  Google Scholar 

  27. Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S-i. & Quate, C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl. Phys. Lett. 52, 362–364 (1988).

    CAS  Google Scholar 

  28. Clemmer, C. & Beebe, T. Jr Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991).

    CAS  Google Scholar 

  29. Heckl, W. M. & Binnig, G. Domain walls on graphite mimic DNA. Ultramicroscopy 42, 1073–1078 (1992).

    Google Scholar 

  30. Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002).

    CAS  Google Scholar 

  31. Červenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B 79, 195429 (2009).

    Google Scholar 

  32. Červenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840–844 (2009).

    Google Scholar 

  33. Robertson, A. W. & Warner, J. H. Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5, 4079 (2013).

    CAS  Google Scholar 

  34. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Google Scholar 

  35. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). This paper reports the chemical vapour deposition synthesis of large-area monolayer graphene on Cu foil.

    CAS  Google Scholar 

  36. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010). This theoretical paper reports a model of the structure of topological defects in polycrystalline graphene.

    Google Scholar 

  37. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).

    CAS  Google Scholar 

  38. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950).

    CAS  Google Scholar 

  39. Seung, H. S. & Nelson, D. R. Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988).

    CAS  Google Scholar 

  40. Carraro, C. & Nelson, D. R. Grain-boundary buckling and spin-glass models of disorder in membranes. Phys. Rev. E 48, 3082–3090 (1993).

    CAS  Google Scholar 

  41. Malola, S., Häkkinen, H. & Koskinen, P. Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B 81, 165447 (2010).

    Google Scholar 

  42. Akhukov, M. A., Fasolino, A., Gornostyrev, Y. N. & Katsnelson, M. I. Dangling bonds and magnetism of grain boundaries in graphene. Phys. Rev. B 85, 115407 (2012).

    Google Scholar 

  43. Robertson, A. W. et al. Atomic structure of interconnected few-layer graphene domains. ACS Nano 5, 6610–6618 (2011).

    CAS  Google Scholar 

  44. Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    CAS  Google Scholar 

  45. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326–329 (2010).

    CAS  Google Scholar 

  46. Chen, J. H. et al. Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys. Rev. B 89, 121407 (2014).

    Google Scholar 

  47. Warner, J. H. et al. Bond length and charge density variations within extended arm chair defects in graphene. ACS Nano 7, 9860–9866 (2013).

    CAS  Google Scholar 

  48. Cockayne, E. et al. Grain boundary loops in graphene. Phys. Rev. B 83, 195425 (2011).

    Google Scholar 

  49. Meyer, J. C. et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Mater. 10, 209–215 (2011).

    CAS  Google Scholar 

  50. Kotakoski, J., Krasheninnikov, A. V., Kaiser, U. & Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011).

    CAS  Google Scholar 

  51. Kotakoski, J. et al. Stone–Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

    Google Scholar 

  52. Kurasch, S. et al. Atom-by-atom observation of grain boundary migration in graphene. Nano Lett. 12, 3168–3173 (2012).

    CAS  Google Scholar 

  53. Brown, L., Hovden, R., Huang, P., Wojcik, M., Muller, D. A. & Park, J. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012).

    CAS  Google Scholar 

  54. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  Google Scholar 

  55. Lin, J. H. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013).

    CAS  Google Scholar 

  56. Gong, L. et al. Reversible loss of Bernal stacking during the deformation of few-layer graphene in nanocomposites. ACS Nano 7, 7287–7294 (2013).

    CAS  Google Scholar 

  57. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    CAS  Google Scholar 

  58. Carlsson, J. M., Ghiringhelli, L. M. & Fasolino, A. Theory and hierarchical calculations of the structure and energetics of [0001] tilt grain boundaries in graphene. Phys. Rev. B 84, 165423 (2011).

    Google Scholar 

  59. Liu, T-H., Gajewski, G., Pao, C-W. & Chang, C-C. Structure, energy, and structural transformations of graphene grain boundaries from atomistic simulations. Carbon 49, 2306–2317 (2011).

    CAS  Google Scholar 

  60. Chen, S. & Chrzan, D. C. Continuum theory of dislocations and buckling in graphene. Phys. Rev. B 84, 214103 (2011).

    Google Scholar 

  61. Li, L., Reich, S. & Robertson, J. Defect energies of graphite: Density-functional calculations. Phys. Rev. B 72, 184109 (2005).

    Google Scholar 

  62. Coraux, J., N'Diaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 8, 565–570 (2008).

    CAS  Google Scholar 

  63. Lehtinen, O., Kurasch, S., Krasheninnikov, A. V. & Kaiser, U. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nature Commun. 4, 2098 (2013).

    CAS  Google Scholar 

  64. Warner, J. H. et al. Rippling graphene at the nanoscale through dislocation addition. Nano Lett. 13, 4937–4944 (2013).

    CAS  Google Scholar 

  65. Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nature Mater. 9, 806–809 (2010). This is the first theoretical paper describing transport properties of grain boundaries in graphene.

    CAS  Google Scholar 

  66. Capasso, A. et al. Graphene ripples generated by grain boundaries in highly ordered pyrolytic graphite. Carbon 68, 330–336 (2014).

    CAS  Google Scholar 

  67. Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    CAS  Google Scholar 

  68. Yakobson, B. I. Mechanical relaxation and 'intramolecular plasticity' in carbon nanotubes. Appl. Phys. Lett. 72, 918–920 (1998).

    CAS  Google Scholar 

  69. Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 98, 075503 (2007).

    Google Scholar 

  70. Ding, F., Jiao, K., Lin, Y. & Yakobson, B. I. How evaporating carbon nanotubes retain their perfection? Nano Lett. 7, 681–684 (2007).

    CAS  Google Scholar 

  71. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    CAS  Google Scholar 

  72. Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

    Google Scholar 

  73. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    CAS  Google Scholar 

  74. Zhang, W., Wu, P., Li, Z. & Yang, J. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 115, 17782–17787 (2011).

    CAS  Google Scholar 

  75. Kim, H. et al. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614–3623 (2012).

    CAS  Google Scholar 

  76. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater. 10, 443–449 (2011). This paper reports the first experimental measurements of electronic transport across isolated grain boundaries in graphene.

    CAS  Google Scholar 

  77. Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). This work reveals the role of surface oxygen in chemical vapour deposition growth of graphene.

    CAS  Google Scholar 

  78. Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    CAS  Google Scholar 

  79. Nie, S., Wofford, J. M., Bartelt, N. C., Dubon, O. D. & McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 84, 155425 (2011).

    Google Scholar 

  80. Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E. & Lyding, J. W. Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011).

    CAS  Google Scholar 

  81. Ogawa, Y. et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. Lett. 3, 219–226 (2012).

    CAS  Google Scholar 

  82. Murdock, A. T. et al. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7, 1351–1359 (2013).

    CAS  Google Scholar 

  83. Meca, E., Lowengrub, J., Kim, H., Mattevi, C. & Shenoy, V. B. Epitaxial graphene growth and shape dynamics on copper: Phase-field modeling and experiments. Nano Lett. 13, 5692–5697 (2013).

    CAS  Google Scholar 

  84. Han, G. H. et al. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011).

    CAS  Google Scholar 

  85. Yan, Z. et al. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6, 9110–9117 (2012).

    CAS  Google Scholar 

  86. Zhou, H. L. et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nature Commun. 4, 2096 (2013).

    Google Scholar 

  87. Mohsin, A. et al. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 7, 8924 (2013).

    CAS  Google Scholar 

  88. Wu, W. et al. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 23, 4898–4903 (2011).

    CAS  Google Scholar 

  89. Massicotte, M., Yu, V., Whiteway, E., Vatnik, D. & Hilke, M. Quantum Hall effect in fractal graphene: growth and properties of graphlocons. Nanotechnology 24, 325601 (2013).

    Google Scholar 

  90. Wu, B. et al. Self-organized graphene crystal patterns. NPG Asia Mater. 5, e36 (2013).

    CAS  Google Scholar 

  91. Tian, J., Cao, H., Wu, W., Yu, Q. & Chen, Y. P. Direct imaging of graphene edges: Atomic structure and electronic scattering. Nano Lett. 11, 3663–3668 (2011).

    CAS  Google Scholar 

  92. Vlassiouk, I. et al. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 6069–6076 (2011).

    CAS  Google Scholar 

  93. Vlassiouk, I. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 117, 18919–18926 (2013).

    CAS  Google Scholar 

  94. Artyukhov, V. I., Liu, Y. & Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl Acad. Sci. USA 109, 15136–15140 (2012).

    CAS  Google Scholar 

  95. Ma, T. et al. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 110, 20386–20391 (2013).

    CAS  Google Scholar 

  96. Kim, D. W., Kim, Y. H., Jeong, H. S. & Jung, H-T. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nature Nanotech. 7, 29–34 (2012).

    CAS  Google Scholar 

  97. Duong, D. L. et al. Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012).

    CAS  Google Scholar 

  98. Jia, C. et al. Direct optical characterization of graphene growth and domains on growth substrates. Sci. Rep. 2, 707 (2012).

    Google Scholar 

  99. Nemes-Incze, P. et al. Revealing the grain structure of graphene grown by chemical vapor deposition. Appl. Phys. Lett. 99, 023104 (2011).

    Google Scholar 

  100. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotech. 8, 821–825 (2013).

    CAS  Google Scholar 

  101. Li, X. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10, 4328–4334 (2010).

    CAS  Google Scholar 

  102. Song, H. S. et al. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci. Rep. 2, 337 (2012).

    CAS  Google Scholar 

  103. Tapaszto, L. et al. Mapping the electronic properties of individual graphene grain boundaries. Appl. Phys. Lett. 100, 053114 (2012).

    Google Scholar 

  104. Ahmad, M. et al. Nanoscale investigation of charge transport at the grain boundaries ad wrinkles in graphene film. Nanotechnology 23, 285705 (2012).

    Google Scholar 

  105. Jauregui, L. A., Cao, H., Wu, W., Yu, Q. & Chen, Y. P. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun. 151, 1100–1104 (2011).

    CAS  Google Scholar 

  106. Petrone, N. et al. Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012).

    CAS  Google Scholar 

  107. Ryu, J. et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano 8, 950–956 (2013).

    Google Scholar 

  108. Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S. & Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004).

    Google Scholar 

  109. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    CAS  Google Scholar 

  110. Shen, T. et al. Quantum Hall effect on centimeter scale chemical vapor deposited graphene films. Appl. Phys. Lett. 99, 232110 (2011).

    Google Scholar 

  111. Clark, K. W. et al. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene. ACS Nano 7, 7956–7966 (2013).

    CAS  Google Scholar 

  112. Koepke, J. C. et al. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study. ACS Nano 7, 75–86 (2012).

    Google Scholar 

  113. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Google Scholar 

  114. Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).

    CAS  Google Scholar 

  115. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    CAS  Google Scholar 

  116. Akhmerov, A. R. & Beenakker, C. W. J. Detection of valley polarization in graphene by a superconducting contact. Phys. Rev. Lett. 98, 157003 (2007).

    CAS  Google Scholar 

  117. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Google Scholar 

  118. Kumar, S. B. & Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012).

    CAS  Google Scholar 

  119. Gunlycke, D., Vasudevan, S. & White, C. T. Confinement, transport gap, and valley polarization in graphene from two parallel decorated line defects. Nano Lett. 13, 259–263 (2012).

    Google Scholar 

  120. Zhang, H., Lee, G., Gong, C., Colombo, L. & Cho, K. Grain boundary effect on electrical transport properties of graphene. J. Phys. Chem. C 118, 2338–2343 (2014).

    CAS  Google Scholar 

  121. Vancsó, P. et al. Electronic transport through ordered and disordered graphene grain boundaries. Carbon 64, 101–110 (2013).

    Google Scholar 

  122. Van Tuan, D. et al. Scaling properties of charge transport in polycrystalline graphene. Nano Lett. 13, 1730–1735 (2013).

    CAS  Google Scholar 

  123. Gargiulo, F. & Yazyev, O. V. Topological aspects of charge-carrier transmission across grain boundaries in graphene. Nano Lett. 14, 250–254 (2014).

    CAS  Google Scholar 

  124. Cortijo, A. & Vozmediano, M. A. H. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl. Phys. B 763, 293–308 (2007).

    Google Scholar 

  125. Mesaros, A., Sadri, D. & Zaanen, J. Berry phase of dislocations in graphene and valley conserving decoherence. Phys. Rev. B 79, 155111 (2009).

    Google Scholar 

  126. Mesaros, A., Papanikolaou, S., Flipse, C. F. J., Sadri, D. & Zaanen, J. Electronic states of graphene grain boundaries. Phys. Rev. B 82, 205119 (2010).

    Google Scholar 

  127. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials (Cambridge Univ. Press, 2009).

    Google Scholar 

  128. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Google Scholar 

  129. Lee, G-H. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340, 1073–1076 (2013). This experimental work shows that mechanical properties of polycrystalline graphene compare to those of single crystalline samples.

    CAS  Google Scholar 

  130. Ruiz-Vargas, C. S. et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    CAS  Google Scholar 

  131. Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010).

    CAS  Google Scholar 

  132. Wei, Y. et al. The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nature Mater. 11, 759–763 (2012).

    CAS  Google Scholar 

  133. Rasool, H. I., Ophus, C., Klug, W. S., Zettl, A. & Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Commun. 4, 2811 (2013).

    Google Scholar 

  134. Kotakoski, J. & Meyer, J. C. Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B 85, 195447 (2012).

    Google Scholar 

  135. Song, Z., Artyukhov, V. I., Yakobson, B. I. & Xu, Z. Pseudo Hall–Petch strength reduction in polycrystalline graphene. Nano Lett. 13, 1829–1833 (2013).

    CAS  Google Scholar 

  136. Cao, A. & Qu, J. Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl. Phys. Lett. 102, 071902 (2013).

    Google Scholar 

  137. Bagri, A., Kim, S-P., Ruoff, R. S. & Shenoy, V. B. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11, 3917–3921 (2011).

    CAS  Google Scholar 

  138. Wang, Y., Vallabhaneni, A. K., Qiu, B. & Ruan, X. Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys. Eng. 18, 155–182 (2014).

    Google Scholar 

  139. Liu, Y., Zou, X. & Yakobson, B. I. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053–7058 (2012).

    CAS  Google Scholar 

  140. Gibb, A. L. et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013).

    CAS  Google Scholar 

  141. Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2012). This theoretical work predicts topological defects in monolayer transition metal dichalcogenides and shows their structural and stoichiometric diversity.

    Google Scholar 

  142. Zhang, Z., Zou, X., Crespi, V. H. & Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7, 10475–10481 (2013).

    CAS  Google Scholar 

  143. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013). This is the first (shortly followed by a few other) experimental study of polycrystalline monolayer MoS 2.

    CAS  Google Scholar 

  144. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    CAS  Google Scholar 

  145. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    CAS  Google Scholar 

  146. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica's dance. Science 342, 224–227 (2013).

    CAS  Google Scholar 

  147. Yang, B., Boscoboinik, J. A., Yu, X., Shaikhutdinov, S. & Freund, H-J. Patterned defect structures predicted for graphene are observed on single-layer silica films. Nano Lett. 13, 4422–4427 (2013).

    CAS  Google Scholar 

  148. Björkman, T. et al. Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci. Rep. 3, 3482 (2013).

    Google Scholar 

  149. Lichtenstein, L., Heyde, M. & Freund, H-J. Crystalline-vitreous interface in two dimensional silica. Phys. Rev. Lett. 109, 106101 (2012).

    Google Scholar 

  150. Lichtenstein, L. et al. The atomic structure of a metal-supported vitreous thin silica film. Angew. Chem. Int. Ed. 51, 404–407 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

O.V.Y. acknowledges funding from the Swiss NSF (grant no. PP00P2_133552) and the ERC for Grant “TopoMat” (no. 306504), as well as technical assistance from G. Autès and F. Gargiulo while preparing the manuscript. Y.P.C. acknowledges research support from NSF, NIST, DTRA, DHS and Purdue University, and collaborations and helpful discussions with many group members and colleagues on topics related to this Review, in particular H. Cao, T.-F. Chung, R. Colby, L. A. Jauregui, E. A. Stach, J. Tian and Q. Yu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oleg V. Yazyev or Yong P. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazyev, O., Chen, Y. Polycrystalline graphene and other two-dimensional materials. Nature Nanotech 9, 755–767 (2014). https://doi.org/10.1038/nnano.2014.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing