Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong underwater adhesives made by self-assembling multi-protein nanofibres

Abstract

Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure–function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m−2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combinatorial and modular genetic strategy for engineering self-assembling underwater adhesives.
Figure 2: Comparison of monomer, individual fibril and co-assembled fibril structures before and after molecular dynamics simulations for modified CsgA-Mfp3, Mfp5-CsgA and (CsgA-Mfp3)-co-(Mfp5-CsgA) copolymer constructs.
Figure 3: Purification, in vitro self-assembly and characterization of CsgA, CsgA-Mfp3, Mfp5-CsgA and (CsgA-Mfp3)-co-(Mfp5-CsgA) fibres.
Figure 4: Intrinsic fluorescence of CsgA, CsgA-Mfp3, Mfp5-CsgA and (CsgA-Mfp3)-co-(Mfp5-CsgA) copolymer fibres.
Figure 5: Adhesion force measurements and adhesion stability of hybrid adhesive fibres determined by the AFM colloidal probe technique.
Figure 6: Comparison of adhesion performances of different functionalized adhesive fibres with different AFM tips.

Similar content being viewed by others

References

  1. Dolgin, E. The sticking point. Nature Med. 19, 124–125 (2013).

    Article  CAS  Google Scholar 

  2. Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res., 41, 99–132 (2011).

    Article  CAS  Google Scholar 

  3. Brubaker, C. E. & Messersmith, P. B. The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28, 2200–2205 (2012).

    Article  CAS  Google Scholar 

  4. Stewart, R. J., Ransom, T. C. & Hlady, V. Natural underwater adhesives. J. Polym. Sci. B 49, 757–771 (2011).

    Article  CAS  Google Scholar 

  5. Stewart, R. J. Protein-based underwater adhesives and the prospects for their biotechnological production. Appl. Microbiol. Biotechnol. 89, 27–33 (2011).

    Article  CAS  Google Scholar 

  6. Yin, M., Yuan, Y., Liu, C. S. & Wang, J. Development of mussel adhesive polypeptide mimics coating for in-situ inducing re-endothelialization of intravascular stent devices. Biomaterials 30, 2764–2773 (2009).

    Article  CAS  Google Scholar 

  7. Brubaker, C. E., Kissler, H., Wang, L. J., Kaufman, D. B. & Messersmith, P. B. Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31, 420–427 (2010).

    Article  CAS  Google Scholar 

  8. Matos-Perez, C. R., White, J. D. & Wilker, J. J. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J. Am. Chem. Soc. 134, 9498–9505 (2012).

    Article  CAS  Google Scholar 

  9. Hwang, D. S., Yoo, H. J., Jun, J. H., Moon, W. K. & Cha, H. J. Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 70, 3352–3359 (2004).

    Article  CAS  Google Scholar 

  10. Kamino, K., Nakano, M. & Kanai, S. Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J. 279, 1750–1760 (2012).

    Article  CAS  Google Scholar 

  11. Kamino, K. Underwater adhesive of marine organisms as the vital link between biological science and material science. Marine Biotechnol. 10, 111–121 (2008).

    Article  CAS  Google Scholar 

  12. Anika, S. in The Functional Fold: Amyloid Structures in Nature (ed. Mostaert, S. J. A.) 131–146 (Pan Stanford, 2012).

    Google Scholar 

  13. Barlow, D. E. et al. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. Langmuir 26, 6549–6556 (2010).

    Article  CAS  Google Scholar 

  14. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  Google Scholar 

  15. Sawaya, M. R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  16. Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotech. 6, 469–479 (2011).

    Article  CAS  Google Scholar 

  17. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  Google Scholar 

  18. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  Google Scholar 

  19. Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotech. 5, 204–207 (2010).

    Article  CAS  Google Scholar 

  20. Li, C. X., Adamcik, J. & Mezzenga, R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotech. 7, 421–427 (2012).

    Article  CAS  Google Scholar 

  21. Waite, J. H. & Benedict, C. V. Assay of dihydroxyphenylalanine (dopa) in invertebrate structural proteins. Methods Enzymol. 107, 397–413 (1983).

    Article  Google Scholar 

  22. Paz, M., Flückiger, R., Boak, A., Kagan, H. & Gallop, P. M. Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem. 266, 689–692 (1991).

    CAS  Google Scholar 

  23. Wang, X., Zhou, Y., Ren, J-J., Hammer, N. D. & Chapman, M. R. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc. Natl Acad. Sci. USA 107, 163–168 (2010).

    Article  CAS  Google Scholar 

  24. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    Article  CAS  Google Scholar 

  25. Yang, J. et al. Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl Acad. Sci. USA 106, 10086–10091 (2009).

    Article  CAS  Google Scholar 

  26. Williams, A. T. R., Winfield, S. A. & Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108, 1067–1071 (1983).

    Article  CAS  Google Scholar 

  27. Del Mercato, L. L. et al. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc. Natl Acad. Sci. USA 104, 18019–18024 (2007).

    Article  CAS  Google Scholar 

  28. Smith, G. J. The fluorescence of dihydroxyphenylalanine: the effects of protonation–deprotonation. Color. Technol. 115, 346–349 (1999).

    Article  CAS  Google Scholar 

  29. Chen, R. F. Fluorescence quantum yields of tryptophan and tyrosine. Anal. Lett. 1, 35–42 (1967).

    Article  CAS  Google Scholar 

  30. Al-Hilaly, Y. K. et al. A central role for dityrosine crosslinking of amyloid-β in Alzheimer's disease. Acta Neuropathol. Commun. 1, 83 (2013).

    Article  Google Scholar 

  31. Leite, F. & Herrmann, P. Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: a review. J. Adhes. Sci. Technol. 19, 365–405 (2005).

    Article  CAS  Google Scholar 

  32. Danner, E. W., Kan, Y. J., Hammer, M. U., Israelachvili, J. N. & Waite, J. H. Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. Biochemistry 51, 6511–6518 (2012).

    Article  CAS  Google Scholar 

  33. Wei, W., Yu, J., Broomell, C., Israelachvili, J. N. & Waite, J. H. Hydrophobic enhancement of dopa-mediated adhesion in a mussel foot protein. J. Am. Chem. Soc. 135, 377–383 (2012).

    Article  Google Scholar 

  34. Wu, C., Lim, J. Y., Fuller, G. G. & Cegelski, L. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air–liquid interface. Biophys. J. 103, 464–471 (2012).

    Article  CAS  Google Scholar 

  35. Goulter-Thorsen, R., Taran, E., Gentle, I., Gobius, K. & Dykes, G. CsgA production by Escherichia coli O157: H7 alters attachment to abiotic surfaces in some growth environments. Appl. Environ. Microbiol. 77, 7339–7344 (2011).

    Article  CAS  Google Scholar 

  36. Lu, Q. et al. Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 10, 20120759 (2013).

    Article  Google Scholar 

  37. Yu, J. et al. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc. Natl Acad. Sci. USA 110, 15680–15685 (2013).

    Article  CAS  Google Scholar 

  38. Li, Y., Qin, M., Li, Y., Cao, Y. & Wang, W. Single molecule evidences for the adaptive binding of DOPA to different wet surfaces. Langmuir 30, 4358–4366 (2014).

    Article  CAS  Google Scholar 

  39. Fowler, D. M., Koulov, A. V., Balch, W. E. & Kelly, J. W. Functional amyloid—from bacteria to humans. Trends Biochem. Sci. 32, 217–224 (2007).

    Article  CAS  Google Scholar 

  40. Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nature Rev. Genet. 13, 21–35 (2012).

    Article  CAS  Google Scholar 

  41. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Mater. 13, 515–523 (2014).

    Article  CAS  Google Scholar 

  42. Sinclair, J. C., Davies, K. M., Venien-Bryan, C. & Noble, M. E. M. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature Nanotech. 6, 558–562 (2011).

    Article  CAS  Google Scholar 

  43. Lv, S. et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010).

    Article  CAS  Google Scholar 

  44. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  Google Scholar 

  45. Auslander, S., Auslander, D., Muller, M., Wieland, M. & Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

    Article  Google Scholar 

  46. Hong, S. H. et al. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific non-standard amino acid incorporation. ACS Synth. Biol. 3, 398–409 (2014).

    Article  CAS  Google Scholar 

  47. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article  CAS  Google Scholar 

  48. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinf. 5.6.1–5.6.30 (2006).

  49. Hwang, D. S. & Waite, J. H. Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: analysis by circular dichroism. Protein Sci. 21, 1689–1695 (2012).

    Article  CAS  Google Scholar 

  50. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2009).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Schwartzman for help in applying AFM colloid nanoparticle technology for measuring adhesive forces and H. Tavakoli Nia (Ortiz group, MIT) for initial discussions regarding this technology. The authors acknowledge help from the NERCE Biomolecule Production Laboratory (Harvard University) for producing part of the cell pellets for protein purification. The authors also thank the Whitehead Institute and the Biopolymers Laboratory in the David H. Koch Institute for Integrated Cancer Research and the Institute for Soldier Nanotechnologies for access to characterization equipment. This research was primarily supported by the Office of Naval Research (N000141310647). This work was also supported in part by the MRSEC Program of the National Science Foundation under award no. DMR-0819762. T.K.L. acknowledges support from the NIH New Innovator Award (1DP2OD008435). The molecular dynamics modelling used the computer cluster and corresponding materials based upon work supported by the National Science Foundation under award no. 0821391.

Author information

Authors and Affiliations

Authors

Contributions

T.K.L. directed the research. C.Z. conceived the technical details and designed the experiments. C.Z. performed or participated in all the experiments. J.D. performed experiments in protein expression and purification. Z.D. assisted in collecting and analysing the fluorescence emission and excitation spectra. A.C. constructed the genes. C.M.S. and T.G. designed the simulations. T.G. performed the simulations. C.Z. and T.K.L. wrote the manuscript with help from all authors. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Timothy K. Lu.

Ethics declarations

Competing interests

T.K.L. and C.Z. have filed a patent disclosure with the MIT Technology Licensing Office on this work.

Supplementary information

Supplementary information

Supplementary Information (PDF 3808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Gurry, T., Cheng, A. et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nature Nanotech 9, 858–866 (2014). https://doi.org/10.1038/nnano.2014.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.199

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research