Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins

Abstract

Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging1. However, spatial resolution in conventional MRI systems is limited to tens of micrometres2, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous ‘dark’ spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dark-spin MRI using scanning gradients and a single NV sensor.
Figure 2: Scanning gradients with subnanometre MRI resolution.
Figure 3: MRI of ensembles of dark spins at the diamond surface.
Figure 4: Individual dark-spin MRI.

Similar content being viewed by others

References

  1. Mansfield, P. Snapshot magnetic resonance imaging (Nobel lecture). Angew. Chem. Int. Ed. 43, 5456–5464 (2004).

    Article  CAS  Google Scholar 

  2. Glover, P. & Mansfield, P. Limits to magnetic resonance microscopy. Rep. Prog. Phys. 65, 1489–1511 (2002).

    Article  Google Scholar 

  3. Palma, C-A. & Samori, P. Blueprinting macromolecular electronics. Nature Chem. 3, 431–436 (2011).

    Article  CAS  Google Scholar 

  4. Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. A large-scale quantum simulator on a diamond surface at room temperature. Nature Phys. 9, 168–173 (2013).

    Article  CAS  Google Scholar 

  5. Sidles, J. A. et al. Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995).

    Article  CAS  Google Scholar 

  6. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  CAS  Google Scholar 

  7. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  8. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  9. Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nature Phys. 7, 687–692 (2011).

    Article  CAS  Google Scholar 

  10. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotech. 7, 320–324 (2012).

    Article  CAS  Google Scholar 

  11. Grotz, B. et al. Sensing external spins with nitrogen-vacancy diamond. New J. Phys. 13, 055004 (2011).

    Article  Google Scholar 

  12. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  13. Mamin, H. J., Sherwood, M. H. & Rugar, D. Detecting external electron spins using nitrogen-vacancy centers. Phys. Rev. B 86, 195422 (2012).

    Article  Google Scholar 

  14. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5 nm)3 sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  15. Steinert, S. et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nature Commun. 4, 1607 (2013).

    Article  CAS  Google Scholar 

  16. Ermakova, A. et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013).

    Article  CAS  Google Scholar 

  17. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  18. De Lange, G. et al. Controlling the quantum dynamics of a mesoscopic spin bath in diamond. Sci. Rep. 2, 382 (2012).

    Article  Google Scholar 

  19. Larsen, R. G. & Singel, D. J. Double electron–electron resonance spin–echo modulation: spectroscopic measurement of electron spin pair separations in orientationally disordered solids. J. Chem. Phys. 98, 5134–5146 (1993).

    Article  CAS  Google Scholar 

  20. Schoenfeld, R. S. & Harneit, W. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett. 106, 030802 (2011).

    Article  Google Scholar 

  21. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013).

    Article  CAS  Google Scholar 

  22. Ofori-Okai, B. K. et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article  Google Scholar 

  23. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  Google Scholar 

  24. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

    Article  CAS  Google Scholar 

  25. Tetienne, J. P. et al. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys. Rev. B 87, 235436 (2013).

    Article  Google Scholar 

  26. McGuinness, L. P. et al. Ambient nanoscale sensing with single spins using quantum decoherence. New J. Phys. 15, 073042 (2013).

    Article  Google Scholar 

  27. Shi, F. et al. Quantum logic readout and cooling of a single dark electron spin. Phys. Rev. B 87, 195414 (2013).

    Article  Google Scholar 

  28. Yao, N. Y. et al. Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011).

    Article  CAS  Google Scholar 

  29. Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, 032322 (2002).

    Article  Google Scholar 

  30. Altenbach, C., Marti, T., Khorana, H. & Hubbell, W. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990).

    Article  CAS  Google Scholar 

  31. Kaufmann, S. et al. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl Acad. Sci. USA 110, 10894–10898 (2013).

    Article  CAS  Google Scholar 

  32. Belthangady, C. et al. Dressed-state resonant coupling between bright and dark spins in diamond. Phys. Rev. Lett. 110, 157601 (2013).

    Article  CAS  Google Scholar 

  33. Laraoui, A. & Meriles, C. A. Approach to dark spin cooling in a diamond nanocrystal. ACS Nano 7, 3403–3410 (2013).

    Article  CAS  Google Scholar 

  34. Schaffry, M., Gauger, E. M., Morton, J. J. L. & Benjamin, S. C. Proposed spin amplification for magnetic sensors employing crystal defects. Phys. Rev. Lett. 107, 207210 (2011).

    Article  Google Scholar 

  35. Goldstein, G. et al. Environment-assisted precision measurement. Phys. Rev. Lett. 106, 140502 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Kolkowitz, N. de Leon and C. Belthangady for technical discussions regarding optimizing NV-based sensors and M. Markham and Element Six for providing diamond samples. The authors acknowledge discussions on the detection of dark spins using DEER with M. D. Lukin, A. Sushkov, I. Lovchinsky, N. Chisholm, S. Bennett, and N. Yao. M.S.G. is supported through fellowships from the Department of Defense (NDSEG programme) and the National Science Foundation. M.W. is supported through a Marie Curie Fellowship and K.D.G. acknowledges support from the Harvard Quantum Optics Center as an HQOC postdoctoral fellow. This work was supported by the DARPA QuEST and QuASAR programmes and the MURI QuISM.

Author information

Authors and Affiliations

Authors

Contributions

M.S.G., M.W. and A.Y. conceived the basic principles of NV-MRI. M.S.G., S.H., P.M. and A.Y. built the combined atomic force and confocal microscope for NV experiments. M.S.G. and A.Y. performed the experiments and analysed the data with input from all authors. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to A. Yacoby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2018 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinolds, M., Warner, M., De Greve, K. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nature Nanotech 9, 279–284 (2014). https://doi.org/10.1038/nnano.2014.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing