Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporal full-colour tuning through non-steady-state upconversion

Subjects

Abstract

Developing light-harvesting materials with tunable emission colours has always been at the forefront of colour display technologies1,2,3. The variation in materials composition, phase and structure can provide a useful tool for producing a wide range of emission colours, but controlling the colour gamut in a material with a fixed composition remains a daunting challenge4,5. Here, we demonstrate a convenient, versatile approach to dynamically fine-tuning emission in the full colour range from a new class of core–shell upconversion nanocrystals by adjusting the pulse width of infrared laser beams. Our mechanistic investigations suggest that the unprecedented colour tunability from these nanocrystals is governed by a non-steady-state upconversion process. These findings provide keen insights into controlling energy transfer in out-of-equilibrium optical processes, while offering the possibility for the construction of true three-dimensional, full-colour display systems with high spatial resolution and locally addressable colour gamut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal multicolour tuning in NaYF4-based core–shell nanocrystals.
Figure 2: Schematic representation detailing the non-steady-state upconversion mechanisms.
Figure 3: Time-dependent and power-dependent measurement of colour-tunable core–shell nanocrystals.
Figure 4: Demonstration of full-colour volumetric three-dimensional display in nanocrystal/PDMS composite materials.

Similar content being viewed by others

References

  1. Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    Article  CAS  Google Scholar 

  2. Lee, J. et al. Universal process-inert encoding architecture for polymer microparticles. Nature Mater. 13, 524–529 (2014).

    Article  CAS  Google Scholar 

  3. Park, S. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    Article  CAS  Google Scholar 

  4. Downing, E., Hesselink, L., Ralston, J. & Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996).

    Article  CAS  Google Scholar 

  5. Kim, T. H. et al. Full-color quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  6. Sun, Y. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    Article  CAS  Google Scholar 

  7. Chen, O. et al. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew. Chem. Int. Ed. 49, 10132–10135 (2010).

    Article  CAS  Google Scholar 

  8. Han, S., Deng, R., Xie, X. & Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715 (2014).

    Article  CAS  Google Scholar 

  9. Gai, S., Li, C., Yang, P. & Lin, J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343–2389 (2014).

    Article  CAS  Google Scholar 

  10. Bünzli, J. C. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

    Article  Google Scholar 

  11. Rapaport, A., Milliez, J., Bass, M., Cassanho, A. & Jenssen, H. Review of the properties of up-conversion phosphors for new emissive displays. J. Display Technol. 2, 68–78 (2006).

    Article  CAS  Google Scholar 

  12. Wen, H. et al. Upconverting near-infrared light through energy management in core–shell–shell nanoparticles. Angew. Chem. Int. Ed. 52, 13419–13423 (2013).

    Article  CAS  Google Scholar 

  13. Heer, S., Kömpe, K., Güdel, H. U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004).

    Article  CAS  Google Scholar 

  14. Li, X., Wang, R., Zhang, F. & Zhao, D. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 14, 3634–3639 (2014).

    Article  Google Scholar 

  15. Wang, F. & Liu, X. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 47, 1378–1385 (2014).

    Article  CAS  Google Scholar 

  16. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  17. Van der Ende, B. M., Aarts, L. & Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

    Article  CAS  Google Scholar 

  18. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nature Nanotech. 9, 300–305 (2014).

    Article  CAS  Google Scholar 

  19. Ju, Q. et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J. Am. Chem. Soc. 134, 1323–1330 (2012).

    Article  CAS  Google Scholar 

  20. Zhou, J. et al. Ultrasensitive polarized up-conversion of Tm3+–Yb3+ doped β-NaYF4 single nanorod. Nano Lett. 13, 2241–2246 (2013).

    Article  CAS  Google Scholar 

  21. Mahalingam, V. et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+ doped Lu3Ga5O12 nanocrystals. J. Phys. Chem. C 112, 17745–17749 (2008).

    Article  CAS  Google Scholar 

  22. Vetrone, F., Boyer, J. C., Capobianco, J. A., Speghini, A. & Bettinelli, M. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004).

    Article  CAS  Google Scholar 

  23. Sharma, G. & Trussell, H. J. Digital color imaging. IEEE Trans. Image Process. 6, 901–932 (1997).

    Article  CAS  Google Scholar 

  24. Shen, J. et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1, 644–650 (2013).

    Article  Google Scholar 

  25. Wang, Y. et al. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7, 7200–7206 (2013).

    Article  CAS  Google Scholar 

  26. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  CAS  Google Scholar 

  27. Sivakumar, S., van Veggel, F. C. J. M. & May, P. S. Near-infrared (NIR) to red and green up-conversion emission from silica sol–gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (hetero-LEET): a new up-conversion process. J. Am. Chem. Soc. 129, 620–625 (2007).

    Article  CAS  Google Scholar 

  28. Fattal, D. et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013).

    Article  CAS  Google Scholar 

  29. Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012).

    Article  CAS  Google Scholar 

  30. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photon. 8, 32–36 (2014).

    Article  CAS  Google Scholar 

  31. Wang, J. et al. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem. Int. Ed. 53, 1616–1620 (2014).

    Article  CAS  Google Scholar 

  32. Debasu, M. L. et al. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation. Adv. Mater. 25, 4868–4874 (2013).

    Article  CAS  Google Scholar 

  33. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Singapore Ministry of Education (grant no. MOE2010-T2-1-083), the Agency for Science, Technology and Research (A*STAR; grant no. 1231AFG028), the National Research Foundation and the Priority Academic Program Development of Jiangsu Higher Education Institutions, Fundamental Studies of Perovskite Solar Cells (2015CB932200), and the National Natural Science Foundation of China (grant nos. 51173081, 61136003). M.H. acknowledges the National Research Foundation, Prime Minister's Office, Singapore, for financial support under the Competitive Research Program (CRP award no. NRF-CRP10-2012-04).

Author information

Authors and Affiliations

Authors

Contributions

R.D. and X.L. conceived the projects with contributions from W.H. and M.H. R.D. and F.Q. were primarily responsible for the experiments. R.C. contributed to numerical simulations. M.H. and W.H. provided input into the design of the experiments. R.D. and X.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wei Huang, Minghui Hong or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, R., Qin, F., Chen, R. et al. Temporal full-colour tuning through non-steady-state upconversion. Nature Nanotech 10, 237–242 (2015). https://doi.org/10.1038/nnano.2014.317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing