Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling domain wall motion in ferroelectric thin films

Abstract

Domain walls in ferroic materials have attracted significant interest in recent years, in particular because of the unique properties that can be found in their vicinity1,2,3. However, to fully harness their potential as nanoscale functional entities4,5, it is essential to achieve reliable and precise control of their nucleation, location, number and velocity. Here, using piezoresponse force microscopy, we show the control and manipulation of domain walls in ferroelectric thin films of Pb(Zr,Ti)O3 with Pt top electrodes. This high-level control presents an excellent opportunity to demonstrate the versatility and flexibility of ferroelectric domain walls. Their position can be controlled by the tuning of voltage pulses, and multiple domain walls can be nucleated and handled in a reproducible fashion. The system is accurately described by analogy to the classical Stefan problem6, which has been used previously to describe many diverse systems and is here applied to electric circuits. This study is a step towards the realization of domain wall nanoelectronics utilizing ferroelectric thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and demonstration of predefined nucleation sites.
Figure 2: Characterization of a single propagating domain wall.
Figure 3: Repeated placement of a single domain wall.
Figure 4: Management of multiple domain walls in a line electrode.
Figure 5: Complex electrode structures as domain wall multipliers.

Similar content being viewed by others

References

  1. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of WO(3−x) . J. Phys. Condens. Matter 10, L377–L380 (1998).

    Article  CAS  Google Scholar 

  2. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  3. Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun. 3, 748 (2012).

    Article  Google Scholar 

  4. Seidel, J. Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905–2909 (2012).

    Article  CAS  Google Scholar 

  5. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  6. Gupta, S. C. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis (Elsevier, 2003).

    Google Scholar 

  7. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010).

    Article  CAS  Google Scholar 

  8. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    Article  CAS  Google Scholar 

  9. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    Article  CAS  Google Scholar 

  10. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).

    Article  CAS  Google Scholar 

  11. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3 . Nature Commun. 4, 1808 (2013).

    Article  Google Scholar 

  12. Feigl, L. et al. Controlled stripes of ultrafine ferroelectric domains. Nature Commun. 5, 4677 (2014).

    Article  CAS  Google Scholar 

  13. Feigl, L., McGilly, L. J., Sandu, C. S. & Setter, N. Compliant ferroelastic domains in epitaxial Pb(Zr,Ti)O3 thin films. Appl. Phys. Lett. 104, 172904 (2014).

    Article  Google Scholar 

  14. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  15. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  16. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  17. Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008).

    Article  CAS  Google Scholar 

  18. Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Dynamics of magnetic domain walls under their own inertia. Science 330, 1810–1813 (2010).

    Article  CAS  Google Scholar 

  19. Lewis, E. R. et al. Fast domain wall motion in magnetic comb structures. Nature Mater. 9, 980–983 (2010).

    Article  CAS  Google Scholar 

  20. Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J-M. Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 89, 097601 (2001).

    Article  Google Scholar 

  21. Rodriguez, B. J. et al. Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy. Appl. Phys. Lett. 86, 012906 (2005).

    Article  Google Scholar 

  22. Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005).

    Article  Google Scholar 

  23. Gruverman, A., Wu, D. & Scott, J. F. Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100, 097601 (2008).

    Article  CAS  Google Scholar 

  24. Whyte, J. R. et al. Ferroelectric domain wall injection. Adv. Mater. 26, 293–298 (2014).

    Article  CAS  Google Scholar 

  25. Van Dorp, W. F., van Someren, B., Hagen, C. W., Kruit, P. & Crozier, P. A. Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett. 5, 1303–1307 (2005).

    Article  CAS  Google Scholar 

  26. Rotkina, L., Oh, S., Eckstein, J. N. & Rotkin, S. V. Logarithmic behavior of the conductivity of electron-beam deposited granular Pt/C nanowires. Phys. Rev. B 72, 233407 (2005).

    Article  Google Scholar 

  27. Botman, A., Mulders, J. J. L., Weemaes, R. & Mentink, S. Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17, 3779–3785 (2006).

    Article  CAS  Google Scholar 

  28. Jesse, S. et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Mater. 7, 209–215 (2008).

    Article  CAS  Google Scholar 

  29. Hoffmann, H. & Fischer, G. Electrical conductivity in thin and very thin platinum films. Thin Solid Films 36, 25–28 (1976).

    Article  CAS  Google Scholar 

  30. Chanthbouala, A. et al. A ferroelectric memristor. Nature Mater. 11, 860–864 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council under the EU 7th Framework Programme (FP7/2007–2013)/ERC grant agreement no. 268058 Mobile-W. The Swiss National Science Foundation (grant nos. 200020_140539 and 200020_153177) and the Swiss Federal Office of Education and Science (COST 0904 Action) are acknowledged for additional financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.J.McG conceived the concept of the study, carried out the experiments and wrote the manuscript with input from all authors. L.F. prepared the thin films. P.Y. and A.K.T. developed the model and theory. N.S. initiated the study and was responsible for the overall direction.

Corresponding author

Correspondence to L. J. McGilly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGilly, L., Yudin, P., Feigl, L. et al. Controlling domain wall motion in ferroelectric thin films. Nature Nanotech 10, 145–150 (2015). https://doi.org/10.1038/nnano.2014.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing