Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Black phosphorus field-effect transistors

Abstract

Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 105 and well-developed current saturation in the IV characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to 1,000 cm2 V−1 s−1 obtained for a thickness of 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal and electronic structure of bulk black phosphorus.
Figure 2: Few-layer phosphorene FET and its device characteristics.
Figure 3: Current saturation and mobility of a few-layer phosphorene FET.
Figure 4: Temperature-dependent behaviour of a few-layer phosphorene FET.

Similar content being viewed by others

References

  1. Delhaès, P. Graphite and Precursors (Gordon & Breach Science, 2001).

    Google Scholar 

  2. Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).

    Article  CAS  Google Scholar 

  3. Slater, J. C., Koster, G. F. & Wood, J. H. Symmetry and free electron properties of the gallium energy bands. Phys. Rev. 126, 1307–1317 (1962).

    Article  CAS  Google Scholar 

  4. Cartz, L., Srinivasa, S. R., Riedner, R. J., Jorgensen, J. D. & Worlton, T. G. Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979).

    Article  CAS  Google Scholar 

  5. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  6. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    Article  CAS  Google Scholar 

  7. Takao, Y. & Morita, A. Electronic structure of black phosphorus: tight binding approach. Physica B&C 105, 93–98 (1981).

    Article  CAS  Google Scholar 

  8. Keyes, R. W. The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

    Article  CAS  Google Scholar 

  9. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963).

    Article  CAS  Google Scholar 

  10. Maruyama, Y., Suzuki, S., Kobayashi, K. & Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Physica B&C 105, 99–102 (1981).

    Article  CAS  Google Scholar 

  11. Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983).

    Article  CAS  Google Scholar 

  12. Rodin, A. S., Carvalho, A. & Neto, A. H. C. Strain-induced gap modification in black phosphorus. Preprint at http://arxiv.org/abs/1401.1801 (2014).

  13. Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn 51, 1193–1199 (1982).

    Article  CAS  Google Scholar 

  14. Jamieson, J. C. Crystal structures adopted by black phosphorus at high pressures. Science 139, 1291–1292 (1963).

    Article  CAS  Google Scholar 

  15. Vanderborgh, C. A. & Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 GPa at 15 K. Phys. Rev. B 40, 9595–9599 (1989).

    Article  CAS  Google Scholar 

  16. Kawamura, H., Shirotani, I. & Tachikawa, K. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49, 879–881 (1984).

    Article  CAS  Google Scholar 

  17. Wittig, J. & Matthias, B. T. Superconducting phosphorus. Science 160, 994–995 (1968).

    Article  CAS  Google Scholar 

  18. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  19. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  20. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  21. Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd–Scuseria–Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  22. Marsman, M., Paier, J., Stroppa, A. & Kresse, G. Hybrid functionals applied to extended systems. J. Phys. 20, 064201 (2008).

    CAS  Google Scholar 

  23. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  24. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  CAS  Google Scholar 

  25. Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  CAS  Google Scholar 

  26. Knoch, J., Zhang, M., Appenzeller, J. & Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A 87, 351–357 (2007).

    Article  CAS  Google Scholar 

  27. Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013).

    Article  Google Scholar 

  28. Schroder, D. K. Semiconductor Material and Device Characterization (Wiley, 2006).

    Google Scholar 

  29. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  CAS  Google Scholar 

  30. Chen, F., Xia, J., Ferry, D. K. & Tao, N. Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    Article  CAS  Google Scholar 

  31. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).

    Article  CAS  Google Scholar 

  32. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

    Book  Google Scholar 

  33. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  34. Petaccia, L. et al. BaDElPh: A normal-incidence monochromator beamline at Elettra. Nucl. Instrum. Methods 606, 780–784 (2009).

    Article  CAS  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  36. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Tao, F. Wang, Y. Wu, L. Ma, M. Sui, G. Chen and F. Yang for discussions and F. Xiu, Y. Liu and C. Zhang for assistance with measurements in PPMS. Q.G. and D.F. acknowledge support from L. Petaccia, D. Lonza and the ICTP-Elettra Users Support Programme. Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. L.L., Y.Y., Q.G., D.F. and Y.Z. acknowledge financial support from the National Basic Research Program of China (973 Program) under grant nos 2011CB921802, 2012CB921400 and 2013CB921902, and from the NSF of China under grant no. 11034001. G.J.Y. and X.H.C. acknowledge support from the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences under grant no. XDB04040100 and the National Basic Research Program of China (973 Program) under grant no. 2012CB922002. X.O. and H.W. are supported by the Pu Jiang Program of Shanghai under grant no. 12PJ1401000.

Author information

Authors and Affiliations

Authors

Contributions

X.H.C. and Y.Z. conceived the project. G.J.Y. and X.H.C. grew bulk black phosphorus crystal. L.L. fabricated black phosphorus thin-film devices and performed electric measurements, and L.L., Y.Y. and Y.Z. analysed the data. Q.G. and D.F. carried out ARPES measurements on bulk black phosphorus crystal. X.O. and H.W. performed ab initio band structure calculations. L.L. and Y.Z. wrote the paper and all authors commented on it.

Corresponding authors

Correspondence to Xian Hui Chen or Yuanbo Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Yu, Y., Ye, G. et al. Black phosphorus field-effect transistors. Nature Nanotech 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing