Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the layer-dependent electronic structure in phosphorene

Abstract

Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new two-dimensional (2D) material that holds promise for electronic and photonic technologies1,2,3,4,5. Here we experimentally demonstrate that the electronic structure of few-layer phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectral range from the visible to the mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that closely match the absorption edge, indicating that they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other 2D materials in electronic and opto-electronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Few-layer phosphorene samples.
Figure 2: Layer-dependent reflection spectra.
Figure 3: Layer-dependent PL spectra.
Figure 4: Evolution of optical resonance energy and band structure.

Similar content being viewed by others

References

  1. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  2. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  3. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  4. Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  Google Scholar 

  5. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  Google Scholar 

  6. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

    Article  CAS  Google Scholar 

  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  9. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  10. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  11. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  12. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotech. 10, 765–769 (2015).

    Article  CAS  Google Scholar 

  13. Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  14. Churchill, H. O. H. & Jarillo-Herrero, P. Two-dimensional crystals: phosphorus joins the family. Nat. Nanotech. 9, 330–331 (2014).

    Article  CAS  Google Scholar 

  15. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (John Wiley & Sons, 2006).

    Book  Google Scholar 

  16. Takao, Y. & Morita, A. Electronic structure of black phosphorus: tight binding approach. Phys. B+C 105, 93–98 (1981).

    Article  CAS  Google Scholar 

  17. Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn. 51, 1193–1199 (1982).

    Article  CAS  Google Scholar 

  18. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  19. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  20. Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    Article  Google Scholar 

  21. Hultgren, R., Gingrich, N. S. & Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935).

    Article  CAS  Google Scholar 

  22. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  23. Zhang, S. et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. Preprint at http://arxiv.org/abs/1411.6124 (2014).

  24. Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2015).

    Article  CAS  Google Scholar 

  26. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article  CAS  Google Scholar 

  27. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  CAS  Google Scholar 

  28. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  29. YU, P. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2010).

    Book  Google Scholar 

  30. Yang, F., Wilkinson, M., Austin, E. J. & O'Donnell, K. P. Origin of the stokes shift: a geometrical model of exciton spectra in 2D semiconductors. Phys. Rev. Lett. 70, 323–326 (1993).

    Article  CAS  Google Scholar 

  31. Polimeni, A. et al. Stokes shift in quantum wells: trapping versus thermalization. Phys. Rev. B 54, 16389–16392 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.L., Z.Z., F.Y. and Y.Z. acknowledge support from the NSF of China (grant nos 11425415 and 11421404) and the National Basic Research Program of China (973 Program; grant no. 2013CB921902). J.K., C.J. and F.W. acknowledge support from National Science Foundation EFRI program (EFMA-1542741). L.L. and Y.Z. also acknowledge support from Samsung Global Research Outreach (GRO) Program. Part of the sample fabrication was conducted at Fudan Nano-fabrication Lab. G.Y and X.C. acknowledge support from the NSF of China (grant no. 11534010), the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (grant no. XDB04040100) and the National Basic Research Program of China (973 Program; grant no. 2012CB922002). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan. T.T. also acknowledges support by a Grant-in-Aid for Scientific Research on Innovative Areas, ‘Nano Informatics’ (grant nos 262480621 and 25106006) from JSPS. D.Y.Q., F.H.d.J. and S.G.L. thank T. Cao and Z. Li for discussions. The theoretical studies were supported by the Theory of Materials Program at the Lawrence Berkeley National Laboratory through the Office of Basic Energy Sciences, US Department of Energy under Contract no. DE-AC02-05CH11231, which provided for the ab initio GW-BSE calculations, and by the National Science Foundation under Grant no. DMR-1508412, which provided for the DFT calculations and theoretical analyses of the interlayer interactions and substrate screening. D.Y.Q. acknowledges support from the NSF Graduate Research Fellowship Grant no. DGE 1106400. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1053575.

Author information

Authors and Affiliations

Authors

Contributions

F.W., Y.Z. and X.H.C. conceived the project. G.J.Y., X.H.C., L.C. and W.R. grew the bulk crystal black phosphorus. L.L. fabricated and characterized the encapsulated samples. J.K. and C.J. designed and built the absorption and PL set-up. L.L., J.K. and C.J. obtained and analysed the absorption and PL spectra. C.J. performed the tight-binding phenomenological model. D.Y.Q., F.H.d.J. and S.G.L performed the ab initio DFT and GW-BSE calculations. Z.S. helped with FTIR measurements and Z.Z. and F.Y. helped with sample fabrication. K.W. and T.T. grew the hBN crystal. All authors discussed and wrote the manuscript.

Corresponding authors

Correspondence to Steven G. Louie, Xian Hui Chen, Yuanbo Zhang or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Kim, J., Jin, C. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotech 12, 21–25 (2017). https://doi.org/10.1038/nnano.2016.171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing