Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dressed spin qubit in silicon

Abstract

Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties—a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of and , one order of magnitude longer than those of the undressed spin. Furthermore, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample design and energy level diagram.
Figure 2: Dressing the electron spin.
Figure 3: Dressed qubit control.
Figure 4: Dressed qubit lifetime and coherence times.

Similar content being viewed by others

References

  1. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969–1975 (1969).

    Google Scholar 

  2. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    CAS  Google Scholar 

  3. Baur, M. et al. Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009).

    CAS  Google Scholar 

  4. London, P. et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 111, 067601 (2013).

    CAS  Google Scholar 

  5. Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

    CAS  Google Scholar 

  6. Cai, J., Jelezko, F., Plenio, M. B. & Retzker, A. Diamond-based single-molecule magnetic resonance spectroscopy. New J. Phys. 15, 013020 (2013).

    Google Scholar 

  7. Timoney, N. et al. Quantum gates and memory using microwave-dressed states. Nature 476, 185–188 (2011).

    CAS  Google Scholar 

  8. Laucht, A. et al. Electrically controlling single-spin qubits in a continuous microwave field. Sci. Adv. 1, 1500022 (2015).

    Google Scholar 

  9. Dreher, L. et al. Electroelastic hyperfine tuning of phosphorus donors in silicon. Phys. Rev. Lett. 106, 037601 (2011).

    CAS  Google Scholar 

  10. Jonathan, D., Plenio, M. & Knight, P. Fast quantum gates for cold trapped ions. Phys. Rev. A 62, 042307 (2000).

    Google Scholar 

  11. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302 (2009).

    Google Scholar 

  12. Mikelsons, G., Cohen, I., Retzker, A. & Plenio, M. B. Universal set of gates for microwave dressed-state quantum computing. New J. Phys. 17, 053032 (2015).

    Google Scholar 

  13. Cai, J., Cohen, I., Retzker, A. & Plenio, M. B. Proposal for high-fidelity quantum simulation using a hybrid dressed state. Phys. Rev. Lett. 115, 160504 (2015).

    Google Scholar 

  14. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    CAS  Google Scholar 

  15. Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    CAS  Google Scholar 

  16. van Donkelaar, J. et al. Single atom devices by ion implantation. J. Phys. 27, 154204 (2015).

    Google Scholar 

  17. Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307(R) (2009).

    Google Scholar 

  18. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Google Scholar 

  19. Dehollain, J. P. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2013).

    CAS  Google Scholar 

  20. Abragam, A. The Principles of Nuclear Magnetism Vol. 32 (Oxford Univ. Press, 1961).

    Google Scholar 

  21. Vandersypen, L. & Chuang, I. NMR techniques for quantum control and computation. Rev. Modern Phys. 76, 1037–1069 (2005).

    Google Scholar 

  22. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    CAS  Google Scholar 

  23. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    CAS  Google Scholar 

  24. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    CAS  Google Scholar 

  25. Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotech. 9, 986–991 (2014).

    CAS  Google Scholar 

  26. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control fidelity. Nat. Nanotech. 9, 981–985 (2014).

    CAS  Google Scholar 

  27. Kroner, M. et al. Rabi splitting and ac-Stark shift of a charged exciton. Appl. Phys. Lett. 92, 031108 (2008).

    Google Scholar 

  28. Wu, F. Y., Grove, R. E. & Ezekiel, S. Investigation of the spectrum of resonance fluorescence induced by a monochromatic field. Phys. Rev. Lett. 35, 1426–1429 (1975).

    CAS  Google Scholar 

  29. Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010).

    CAS  Google Scholar 

  30. Jeschke, G. Coherent superposition of dressed spin states and pulse dressed electron spin resonance. Chem. Phys. Lett. 301, 524–530 (1999).

    CAS  Google Scholar 

  31. Laucht, A. et al. Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin. Preprint at http://arxiv.org/1606.02380 (2016).

  32. Nakamura, Y., Pashkin, Y. A. & Tsai, J. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    CAS  Google Scholar 

  33. DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000).

    CAS  Google Scholar 

  34. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Google Scholar 

  35. Hanson, R. & Burkard, G. Universal set of quantum gates for double-dot spin qubits with fixed interdot coupling. Phys. Rev. Lett. 98, 050502 (2007).

    Google Scholar 

  36. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    Google Scholar 

  37. Yan, F. et al. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution. Nature Commun. 4, 2337 (2013).

    Google Scholar 

  38. Loretz, M., Rosskopf, T. & Degen, C. Radio-frequency magnetometry using a single electron spin. Phys. Rev. Lett. 110, 017602 (2013).

    CAS  Google Scholar 

  39. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Google Scholar 

  40. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    CAS  Google Scholar 

  41. Xu, X. et al. Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).

    Google Scholar 

  42. Golter, D. A., Baldwin, T. K. & Wang, H. Protecting a solid-state spin from decoherence using dressed spin states. Phys. Rev. Lett. 113, 237601 (2014).

    Google Scholar 

  43. Cai, J. et al. Robust dynamical decoupling with concatenated continuous driving. New J. Phys. 14, 113023 (2012).

    Google Scholar 

  44. Zhang, J., Souza, A. M., Brandao, F. D. & Suter, D. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014).

    Google Scholar 

  45. Wang, Z.-H. et al. Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon. Phys. Rev. B 85, 085206 (2012).

    Google Scholar 

  46. Álvarez, G. A. & Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett. 107, 230501 (2011).

    Google Scholar 

  47. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    CAS  Google Scholar 

  48. Franke, D. P. et al. Interaction of strain and nuclear spins in silicon: quadrupolar effects on ionized donors. Phys. Rev. Lett. 115, 057601 (2015).

    Google Scholar 

  49. Barfuss, A., Teissier, J., Neu, E., Nunnenkamp, A. & Maletinsky, P. Strong mechanical driving of a single electron spin. Nat. Phys. 11, 820–824 (2015).

    CAS  Google Scholar 

  50. Soykal, O. O., Ruskov, R. & Tahan, C. Sound-based analogue of cavity quantum electrodynamics in silicon. Phys. Rev. Lett. 107, 235502 (2011).

    CAS  Google Scholar 

  51. Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    CAS  Google Scholar 

  52. Bennett, S. D. et al. Phonon-induced spin–spin interactions in diamond nanostructures: application to spin squeezing. Phys. Rev. Lett. 110, 156402 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027) and the US Army Research Office (W911NF-13-1-0024). We acknowledge support from the Australian National Fabrication Facility and from the laboratory of R. Elliman at the Australian National University for the ion-implantation facilities. The work at Keio was supported by the Japanese Society for the Promotion of Science JSPS KAKEN (S) and the Core-to-Core Program.

Author information

Authors and Affiliations

Authors

Contributions

A.L., R.K., S.S., J.P.D., J.T.M., A.S.D. and A.M. designed the experiments. A.L. performed the measurements and analysed the results with A.M.'s supervision and R.K.'s and S.S.'s assistance. A.L. and F.A.M. performed the simulations with A.M.'s supervision. D.N.J. and J.C.M. designed and performed the 31P implantation experiments. F.E.H. fabricated the device with A.S.D.'s supervision and R.K.'s and S.F.'s assistance. K.M.I. prepared and supplied the 28Si epilayer wafer. A.L. and A.M. wrote the manuscript, with input from all the co-authors.

Corresponding authors

Correspondence to Arne Laucht or A. Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laucht, A., Kalra, R., Simmons, S. et al. A dressed spin qubit in silicon. Nature Nanotech 12, 61–66 (2017). https://doi.org/10.1038/nnano.2016.178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing