Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent spin-exchange via a quantum mediator

Abstract

Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits1,2 and trapped ions3. For quantum dot arrays, which combine a high degree of tunability4 with extremely long coherence times5, the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout26, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors28 and DNA29. The same superexchange concept can also be applied in cold atom experiments30.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear array of three quantum dots and long-range spin transfer.
Figure 2: Superexchange-driven spin oscillations.
Figure 3: Transition from superexchange to nearest-neighbour exchange.

Similar content being viewed by others

References

  1. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  CAS  Google Scholar 

  2. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  Google Scholar 

  3. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).

    Article  CAS  Google Scholar 

  4. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  5. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  CAS  Google Scholar 

  6. Taylor, J. M. & Lukin, M. D. Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip. Preprint at http://arxiv.org/cond-mat/0605144v1 (2006).

  7. Burkard, G. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307 (2006).

    Article  Google Scholar 

  8. Hu, X., Liu, Y. X. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  Google Scholar 

  9. Schuetz, M. J. A. et al.. Universal quantum transducers based on surface acoustic waves. Phys. Rev. X 5, 031031 (2015).

    Google Scholar 

  10. Trifunovic, L . et al.. Long-distance spin–spin coupling via floating gates. Phys. Rev. X 2, 011006 (2012).

    Google Scholar 

  11. Trifunovic, L., Pedrocchi, F. L. & Loss, D . Long-distance entanglement of spin qubits via ferromagnet. Phys. Rev. X 3, 041023 (2013).

    Google Scholar 

  12. Friesen, M., Biswas, A., Hu, X. & Lidar, D. Efficient multiqubit entanglement via a spin bus. Phys. Rev. Lett. 98, 230503 (2007).

    Article  Google Scholar 

  13. Leijnse, M. & Flensberg, K. Coupling spin qubits via superconductors. Phys. Rev. Lett. 111, 060501 (2013).

    Article  Google Scholar 

  14. Hassler, F., Catelani, G. & Bluhm, H. Exchange-interaction of two spin qubits mediated by a superconductor. Phys. Rev. B 92, 235401 (2015).

    Article  Google Scholar 

  15. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  16. Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article  CAS  Google Scholar 

  17. Mehl, S., Bluhm, H. & DiVincenzo, D. P. Two-qubit couplings of singlet–triplet qubits mediated by one quantum state. Phys. Rev. B 90, 045404 (2014).

    Article  Google Scholar 

  18. Lehmann, J., Gaita-Arino, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotech. 2, 312–317 (2007).

    Article  CAS  Google Scholar 

  19. Sánchez, R., Gallego-Marcos, F. & Platero, G. Superexchange blockade in triple quantum dots. Phys. Rev. B 89, 161402 (2014).

    Article  Google Scholar 

  20. Stano, P., Klinovaja, J., Braakman, F. R., Vandersypen, L. M. K. & Loss, D. Fast long-distance control of spin qubits by photon-assisted cotunneling. Phys. Rev. B 92, 075302 (2015).

    Article  Google Scholar 

  21. Srinivasa, V., Xu, H. & Taylor, J. M. Tunable spin-qubit coupling mediated by a multielectron quantum dot. Phys. Rev. Lett. 114, 226803 (2015).

    Article  CAS  Google Scholar 

  22. Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    Article  CAS  Google Scholar 

  23. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  CAS  Google Scholar 

  24. Busl, M. et al. Bipolar spin blockade and coherent state superpositions in a triple quantum dot. Nat. Nanotech. 8, 261–265 (2013).

    Article  CAS  Google Scholar 

  25. Sánchez, R. et al. Long-range spin transfer in triple quantum dots. Phys. Rev. Lett. 112, 176803 (2014).

    Article  Google Scholar 

  26. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  27. Kramers, H. L'interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica 1, 182–192 (1934).

    Article  CAS  Google Scholar 

  28. Kim, C. et al. Systematics of the photoemission spectral function of cuprates: insulators and hole- and electron-doped superconductors. Phys. Rev. Lett. 80, 4245 (1998).

    Article  CAS  Google Scholar 

  29. Giese, B., Amaudrut, J., Köhler, A. K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    Article  CAS  Google Scholar 

  30. Meinert, F. et al. Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench. Science 344, 1259–1262 (2014).

    Article  CAS  Google Scholar 

  31. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).

    Article  CAS  Google Scholar 

  32. Barthelemy, P. & Vandersypen, L. M. K. Quantum dot systems: a versatile platform for quantum simulations. Ann. Phys. 525, 808–826 (2013).

    Article  CAS  Google Scholar 

  33. Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 161308 (2010).

    Article  Google Scholar 

  34. Braakman, F. R., Barthelemy, P., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Long-distance coherent coupling in a quantum dot array. Nat. Nanotech. 8, 432–437 (2013).

    Article  CAS  Google Scholar 

  35. Baart, T. A. et al. Single-spin CCD. Nat. Nanotech. 11, 330–334 (2016).

    Article  CAS  Google Scholar 

  36. Dial, O. E. et al. Charge noise spectroscopy using coherent exchange oscillations in a singlet–triplet qubit. Phys. Rev. Lett. 110, 146804 (2013).

    Article  CAS  Google Scholar 

  37. Shafiei, M., Nowack, K., Reichl, C., Wegscheider, W. & Vandersypen, L. Resolving spin–orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot. Phys. Rev. Lett. 110, 107601 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with the members of the Delft spin qubit team and sample fabrication by F.R. Braakman. The authors thank M. Ammerlaan, J. Haanstra, R. Roeleveld, M. Tiggelman and R. Vermeulen for technical support. The authors acknowledge financial support from the Intelligence Advanced Research Projects Activity (IARPA) Multi-Qubit Coherent Operations (MQCO) Program, the Netherlands Organization of Scientific Research (NWO) Graduate Program, the Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.A.B. and T.F. executed the experiment and analysed the data. C.R. and W.W. provided the heterostructure. T.A.B., T.F. and L.M.K.V. contributed to the interpretation of the data, and T.A.B. and L.M.K.V. wrote the paper, with comments from T.F.

Corresponding author

Correspondence to Lieven Mark Koenraad Vandersypen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9781 kb)

Supplementary information

Supplementary information (ZIP 41884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baart, T., Fujita, T., Reichl, C. et al. Coherent spin-exchange via a quantum mediator. Nature Nanotech 12, 26–30 (2017). https://doi.org/10.1038/nnano.2016.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing