Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration

Abstract

Spin–orbit torque, a torque brought about by in-plane current via the spin–orbit interactions in heavy-metal/ferromagnet nanostructures, provides a new pathway to switch the magnetization direction. Although there are many recent studies, they all build on one of two structures that have the easy axis of a nanomagnet lying orthogonal to the current, that is, along the z or y axes. Here, we present a new structure with the third geometry, that is, with the easy axis collinear with the current (along the x axis). We fabricate a three-terminal device with a Ta/CoFeB/MgO-based stack and demonstrate the switching operation driven by the spin–orbit torque due to Ta with a negative spin Hall angle. Comparisons with different geometries highlight the previously unknown mechanisms of spin–orbit torque switching. Our work offers a new avenue for exploring the physics of spin–orbit torque switching and its application to spintronics devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of SOT devices and magnetization trajectories.
Figure 2: Sample structure with measurement set-up.
Figure 3: RHx and RJ loops.
Figure 4: RJ loop at various Hz and JC versus Hz.

Similar content being viewed by others

References

  1. Slaughter, J. M. et al. in 2012 IEEE Int. Electron Devices Meet. 29.3.1–29.3.4 (IEEE, 2012); http://dx.doi.org/10.1109/IEDM.2012.6479128.

  2. Fukami, S., Yamanouchi, M., Ikeda, S. & Ohno, H. Domain wall motion device for nonvolatile memory and logic—size dependence of device properties. IEEE Trans. Magn. 50, 3401006 (2014).

    Article  Google Scholar 

  3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  4. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  5. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  6. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  7. Yamanouchi, M. et al. Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Appl. Phys. Lett. 102, 212408 (2013).

    Article  Google Scholar 

  8. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  9. Zhang, C. et al. Magnetization reversal induced by in-plane current in Ta/CoFeB/MgO structures with perpendicular magnetic easy axis. J. Appl. Phys. 115, 17C714 (2014).

    Article  Google Scholar 

  10. Cubukcu, M. et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014).

    Article  Google Scholar 

  11. Sakimura, N. et al. in Proc. 2014 IEEE Int. Solid-State Circuits Conf. 184–185 (IEEE, 2014).

  12. Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  13. Lo Conte, R. et al. Spin–orbit torque-driven magnetization switching and thermal effects studied in Ta/CoFeB/MgO nanowires. Appl. Phys. Lett. 105, 122404 (2014).

    Article  Google Scholar 

  14. Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  15. Qiu, X. et al. Spin–orbit–torque engineering via oxygen manipulation. Nature Nanotech. 10, 333–338 (2015).

    Article  CAS  Google Scholar 

  16. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  17. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  18. Haney, P. M., Lee, H.-W., Lee, K.-J., Manchon, A. & Stiles, M. D. Current induced torques and interfacial spin–orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

  19. Finocchio, G., Carpentieri, M., Martinez, E. & Azzerboni, B. Switching of a single ferromagnetic layer driven by spin Hall effect. Appl. Phys. Lett. 102, 212410 (2013).

    Article  Google Scholar 

  20. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Thermally activated switching of perpendicular magnet by spin–orbit spin torque. Appl. Phys. Lett. 104, 072413 (2014).

    Article  Google Scholar 

  21. Suzuki, T. et al. Current-induced effective field in perpendicularly magnetized Ta/CoFeB/MgO wire. Appl. Phys. Lett. 98, 142505 (2011).

    Article  Google Scholar 

  22. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nature Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  23. Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).

    Article  Google Scholar 

  24. Fan, X. et al. Observation of the nonlocal spin–orbital effective field. Nature Commun. 4, 1799 (2013).

    Article  Google Scholar 

  25. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  26. Skinner, T. D. et al. Spin–orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers. Appl. Phys. Lett. 104, 062401 (2014).

    Article  Google Scholar 

  27. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721–724 (2010).

    Article  CAS  Google Scholar 

  28. Oh, S.-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009).

    Article  CAS  Google Scholar 

  29. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Hayashi, H. Sato and F. Matsukura for discussions and S. DuttaGupta, N. Ohshima, C. Igarashi, I. Morita, T. Hirata, H. Iwanuma, Y. Kawato and K. Goto for technical support. A portion of this work was supported by the R&D Project for ICT Key Technology to Realize Future Society of MEXT, the R&D Subsidiary Program for the Promotion of Academia–Industry Cooperation of METI, the ImPACT Program of CSTI and JSPS KAKENHI grant numbers 15K13964 and 15J04691.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and H.O. conceived and designed the study. S.F. deposited the film. T.A. and C.Z. fabricated the samples and performed the measurements, T.A. and S.F. analysed the data and performed the numerical calculation. S.F. wrote the manuscript with input from H.O. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to S. Fukami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukami, S., Anekawa, T., Zhang, C. et al. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nature Nanotech 11, 621–625 (2016). https://doi.org/10.1038/nnano.2016.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.29

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing