Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

Abstract

Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light-stimulated release of small-molecule payloads from a DNA nanocapsule.
Figure 2: Light-triggered release of small molecules from chemically modified dextrans.
Figure 3: Light-stimulated cytosolic delivery of a targeted payload in live cells and in vivo.
Figure 4: Light-triggered activation of neurons by photocaged DHEA.

Similar content being viewed by others

References

  1. Aznar, E. et al. Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016).

    Article  CAS  Google Scholar 

  2. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  Google Scholar 

  3. Lee, M. H., Sessler, J. L. & Kim, J. S. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc. Chem. Res. 48, 2935–2946 (2015).

    Article  CAS  Google Scholar 

  4. Gao, W., Chan, J. M. & Farokhzad, O. C. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 7, 1913–1920 (2010).

    Article  CAS  Google Scholar 

  5. Lee, M. H. et al. Liposomal texaphyrin theranostics for metastatic liver cancer. J. Am. Chem. Soc. 138, 16380–16387 (2016).

    Article  CAS  Google Scholar 

  6. Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

    Article  Google Scholar 

  7. Ellis-Davies, G. C. R. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    Article  CAS  Google Scholar 

  8. Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H.-B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).

    Article  CAS  Google Scholar 

  9. Shi, D. D., Trigo, F. F., Semmelhack, M. F. & Wang, S. S.-H. Synthesis and biological evaluation of bis-CNB-GABA, a photoactivatable neurotransmitter with low receptor interference and chemical two-photon uncaging properties. J. Am. Chem. Soc. 136, 1976–1981 (2014).

    Article  CAS  Google Scholar 

  10. Ellis-Davies, G. C. A chemist and biologist talk to each other about caged neurotransmitters. Beilstein J. Org. Chem. 9, 64–73 (2013).

    Article  CAS  Google Scholar 

  11. Lai, C.-Y. et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003).

    Article  CAS  Google Scholar 

  12. Nagy, P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid. Redox Signal. 18, 1623–1641 (2013).

    Article  CAS  Google Scholar 

  13. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    Article  CAS  Google Scholar 

  14. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  15. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  16. Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. 48, 4134–4137 (2009).

    Article  CAS  Google Scholar 

  17. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  Google Scholar 

  18. Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotech. 11, 1112–1119 (2016).

    Article  CAS  Google Scholar 

  19. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotech. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  20. Crawford, R. et al. Non-covalent single transcription factor encapsulation inside a DNA cage. Angew. Chem. Int. Ed. 52, 2284–2288 (2013).

    Article  CAS  Google Scholar 

  21. Surana, S., Bhatia, D. & Krishnan, Y. A method to study in vivo stability of DNA nanostructures. Methods 64, 94–100 (2013).

    Article  CAS  Google Scholar 

  22. Häcker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J. 17, 6230–6240 (1998).

    Article  Google Scholar 

  23. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotech. 10, 645–651 (2015).

    Article  CAS  Google Scholar 

  24. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  Google Scholar 

  25. Compagnone, N. A. & Mellon, S. H. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc. Natl Acad. Sci. USA 95, 4678–4683 (1998).

    Article  CAS  Google Scholar 

  26. Hajszan, T., MacLusky, N. J. & Leranth, C. Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology 145, 1042–1045 (2004).

    Article  CAS  Google Scholar 

  27. Kimonides, V. G., Khatibi, N. H., Svendsen, C. N., Sofroniew, M. V. & Herbert, J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 95, 1852–1857 (1998).

    Article  CAS  Google Scholar 

  28. Cardounel, A., Regelson, W. & Kalimi, M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action2. Proc. Soc. Exp. Biol. Med. 222, 145–149 (1999).

    Article  CAS  Google Scholar 

  29. Suzuki, M., Wright, L. S., Marwah, P., Lardy, H. A. & Svendsen, C. N. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc. Natl Acad. Sci. USA 101, 3202–3207 (2004).

    Article  CAS  Google Scholar 

  30. Compagnone, N. A. & Mellon, S. H. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 21, 1–56 (2000).

    Article  CAS  Google Scholar 

  31. Roberts, E., Bologa, L., Flood, J. F. & Smith, G. E. Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice. Brain Res. 406, 357–362 (1987).

    Article  CAS  Google Scholar 

  32. MacLusky, N. J., Hajszan, T. & Leranth, C. Effects of dehydroepiandrosterone and flutamide on hippocampal CA1 spine synapse density in male and female rats: implications for the role of androgens in maintenance of hippocampal structure. Endocrinology 145, 4154–4161 (2004).

    Article  CAS  Google Scholar 

  33. Joshi, H., Bhatia, D., Krishnan, Y. & Maiti, P. K. Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations. Nanoscale. 9, 4467–4477 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Integrated Light Microscopy facility at the University of Chicago. K.X. acknowledges a summer research fellowship from the Department of Chemistry, University of Chicago and S.S.S. acknowledges the Cure Alzheimer's Fund. This work was supported by Human Frontier Science Program Research grant no. RGP0029/2014, the National Center for Advancing Translational Sciences of the National Institutes of Health through grant no. UL1 TR000430, Materials Research Science and Engineering Center grant no. DMR-1420709, and UChicago start-up funds to Y.K. Y.K. is a Brain Research Foundation Fellow.

Author information

Authors and Affiliations

Authors

Contributions

A.T.V., K.X. and M.R.M. contributed reagents and performed experiments. K.C. provided expertise in C. elegans. A.T.V., K.C. and Y.K. analysed the data. A.T.V. and Y.K. conceived the project and wrote the paper. All authors discussed the results and gave input on the manuscript.

Corresponding author

Correspondence to Yamuna Krishnan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1162 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 160 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 3143 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 11026 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 6312 kb)

Supplementary Movie 5

Supplementary Movie 5 (MP4 15517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veetil, A., Chakraborty, K., Xiao, K. et al. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nature Nanotech 12, 1183–1189 (2017). https://doi.org/10.1038/nnano.2017.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.159

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research