Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual-light control of nanomachines that integrate motor and modulator subunits

This article has been updated

Abstract

A current challenge in the field of artificial molecular machines is the synthesis and implementation of systems that can produce useful work when fuelled with a constant source of external energy1,2,3,4,5. The first experimental achievements of this kind consisted of machines with continuous unidirectional rotations6,7,8,9,10,11,12,13,14 and translations15,16,17 that make use of ‘Brownian ratchets’18,19,20,21,22,23,24,25 to bias random motions. An intrinsic limitation of such designs is that an inversion of directionality requires heavy chemical modifications in the structure of the actuating motor part26,27. Here we show that by connecting subunits made of both unidirectional light-driven rotary motors and modulators, which respectively braid and unbraid polymer chains in crosslinked networks, it becomes possible to reverse their integrated motion at all scales. The photostationary state of the system can be tuned by modulation of frequencies using two irradiation wavelengths. Under this out-of-equilibrium condition, the global work output (measured as the contraction or expansion of the material) is controlled by the net flux of clockwise and anticlockwise rotations between the motors and the modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functioning principle and chemical design of an integrated motor/modulator system.
Figure 2: Schematic representations of the mechanical topology acting in the gel.
Figure 3: Rotational dynamics in individual modulator subunits.
Figure 4: Actuation at two wavelengths of integrated motor/modulator systems.

Similar content being viewed by others

Change history

  • 24 March 2017

    In the original version of this Letter a sentence was mistakenly truncated during production. The correct sentence reads 'The basic concept rests on connecting a nanomotor to a releasing elementary unit (that functions as a clutch) within modules that are functionally robust against thermal noise (and here with polymer chains that function as a transmission). This has been corrected in all versions of the Letter.

References

  1. Abendroth, J. M., Bushuyev, O. S., Weiss, P. S. & Barrett, C. J. Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015).

    Article  CAS  Google Scholar 

  2. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  3. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  4. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  5. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  6. Kistemaker, J. C. M., Štacko, P., Visser, J. & Feringa, B. L. Unidirectional rotary motion in achiral molecular motors. Nat. Chem. 7, 890–896 (2015).

    Article  CAS  Google Scholar 

  7. Greb, L., Eichhöfer, A. & Lehn, J.-M. Synthetic molecular motors: thermal N inversion and directional photoinduced C=N bond rotation of camphorquinone imines. Angew. Chem. Int. Ed. 54, 14345–14348 (2015).

    Article  CAS  Google Scholar 

  8. Guentner, M. et al. Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nat. Commun. 6, 8406 (2015).

    Article  CAS  Google Scholar 

  9. Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  CAS  Google Scholar 

  10. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  Google Scholar 

  11. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  12. Klok, M. et al. MHz unidirectional rotation of molecular rotary motors. J. Am. Chem. Soc. 130, 10484–10485 (2008).

    Article  CAS  Google Scholar 

  13. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  14. Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

  15. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  16. Cheng, C. et al. An artificial molecular pump. Nat. Nanotech. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  17. Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    Article  CAS  Google Scholar 

  18. Cheng, C., McGonigal, P. R., Stoddart, J. F. & Astumian, R. D. Design and synthesis of nonequilibrium systems. ACS Nano 9, 8672–8688 (2015).

    Article  CAS  Google Scholar 

  19. Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotech. 7, 684–688 (2012).

    Article  CAS  Google Scholar 

  20. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  Google Scholar 

  21. Astumian, R. D. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Phys. Chem. Chem. Phys. 9, 5067–5083 (2007).

    Article  CAS  Google Scholar 

  22. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  CAS  Google Scholar 

  23. Mahadevan, L. Motility powered by supramolecular springs and ratchets. Science 288, 95–99 (2000).

    Article  CAS  Google Scholar 

  24. Astumian, R. D. Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  25. Peskin, C. S., Odell, G. M. & Oster, G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993).

    Article  CAS  Google Scholar 

  26. Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R. & Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nat. Chem. 3, 53–60 (2011).

    Article  CAS  Google Scholar 

  27. Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    Article  CAS  Google Scholar 

  28. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotech. 10, 161–165 (2015).

    Article  Google Scholar 

  29. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article  CAS  Google Scholar 

  30. Maughan, D. W. & Godt, R. E. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers. Biophys. Struct. Mech. 7, 17–40 (1980).

    Article  CAS  Google Scholar 

  31. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  32. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotech. 11, 585–592 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC Starting Grant agreement no. 257099 (N.G.). We thank the French National Research Agency (ANR, project INTEGRATIONS) for financial support. We also thank the Centre National de la Recherche Scientifique, European Cooperation in Science and Technology action (CM 1304), the International Center for Frontier Research in Chemistry, the Laboratory of Excellence for Complex System Chemistry, the University of Strasbourg and the Institut Universitaire de France. Q.L. thanks the China Scholarship Council for a doctoral fellowship. We are grateful to G. Strub for manufacturing the moulds to shape the gels, J. Lemoine for HPLC purifications and J.-M. Strub for high-resolution mass spectroscopy. The authors also thank V. Le Houerou for discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.F., E.M. and N.G. conceived the work. J.T.F., Q.L., A.G., J.-R.C.-I. and D.D. performed the experiments. O.S. established the mathematical model. All the authors discussed and interpreted the data. N.G. wrote the paper and all the authors commented on the manuscript.

Corresponding author

Correspondence to Nicolas Giuseppone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foy, J., Li, Q., Goujon, A. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotech 12, 540–545 (2017). https://doi.org/10.1038/nnano.2017.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing