Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes

Abstract

Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane characteristics and length scales.
Figure 2: Gas transport across NATM pores.
Figure 5: Transport characteristics of NATMs.
Figure 3: Water and ion transport across NATM pores.
Figure 4: NATM pore creation methods.

Similar content being viewed by others

References

  1. Baker, R. W. & Low, B. T. Gas separation membrane materials: a perspective. Macromolecules 47, 6999–7013 (2014).

    CAS  Google Scholar 

  2. Baker, R. W. Membrane Technology and Applications (John Wiley & Sons, 2004).

    Google Scholar 

  3. Buonomenna, M. G. Membrane processes for a sustainable industrial growth. RSC Adv. 3, 5694–5740 (2013).

    CAS  Google Scholar 

  4. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).

    CAS  Google Scholar 

  5. Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci., Polym. Phys. 48, 1685–1718 (2010).

    CAS  Google Scholar 

  6. Mohammad, A. W., Ng, C. Y., Lim, Y. P. & Ng, G. H. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food Bioprocess Technol. 5, 1143–1156 (2012).

    Google Scholar 

  7. van Reis, R. & Zydney, A. Bioprocess membrane technology. J. Membrane Sci. 297, 16–50 (2007).

    CAS  Google Scholar 

  8. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009).

    CAS  Google Scholar 

  9. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Google Scholar 

  10. Malaeb, L. & Ayoub, G. M. Reverse osmosis technology for water treatment: state of the art review. Desalination 267, 1–8 (2011).

    CAS  Google Scholar 

  11. Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).

    CAS  Google Scholar 

  12. Stamatialis, D. F. et al. Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J. Membrane Sci. 308, 1–34 (2008).

    CAS  Google Scholar 

  13. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

    CAS  Google Scholar 

  14. Takht Ravanchi, M., Kaghazchi, T. & Kargari, A. Application of membrane separation processes in petrochemical industry: a review. Desalination 235, 199–244 (2009).

    CAS  Google Scholar 

  15. Pendergast, M. M. & Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011).

    CAS  Google Scholar 

  16. De Marco, R., Clarke, G. & Pejcic, B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 19, 1987–2001 (2007).

    CAS  Google Scholar 

  17. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  18. Tavolaro, A. & Drioli, E. Zeolite membranes. Adv. Mater. 11, 975–996 (1999).

    CAS  Google Scholar 

  19. Buonomenna, M. G., Yave, W. & Golemme, G. Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2, 10745–10773 (2012).

    CAS  Google Scholar 

  20. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  21. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Google Scholar 

  22. Anselmetti, D. & Gölzhäuser, A. Converting molecular monolayers into functional membranes. Angew. Chem. Int. Ed. 53, 12300–12302 (2014).

    CAS  Google Scholar 

  23. Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014).

    CAS  Google Scholar 

  24. Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).

    CAS  Google Scholar 

  25. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  26. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008). This study experimentally demonstrated the impermeability of pristine graphene.

    Article  CAS  Google Scholar 

  27. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  28. Chen, Y., Zou, J., Campbell, S. J. & Le Caer, G. Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004).

    CAS  Google Scholar 

  29. Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotech. 7, 728–732 (2012). This study experimentally realized molecular sieving across atomically thin membranes.

    CAS  Google Scholar 

  30. Zhao, Y. et al. Two-dimensional material membranes: an emerging platform for controllable mass transport applications. Small 10, 4521–4542 (2014).

    CAS  Google Scholar 

  31. Aghigh, A. et al. Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365, 389–397 (2015).

    CAS  Google Scholar 

  32. Yoon, H. W., Cho, Y. H. & Park, H. B. Graphene-based membranes: status and prospects. Philos. Trans. R. Soc. A 374, 20150024 (2016).

    Google Scholar 

  33. Mahmoud, K. A., Mansoor, B., Mansour, A. & Khraisheh, M. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015).

    CAS  Google Scholar 

  34. Sun, C., Wen, B. & Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 60, 1807–1823 (2015).

    CAS  Google Scholar 

  35. Huang, L., Zhang, M., Li, C. & Shi, G. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6, 2806–2815 (2015).

    CAS  Google Scholar 

  36. Sun, P., Wang, K. & Zhu, H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).

    CAS  Google Scholar 

  37. Cohen-Tanugi, D. & Grossman, J. C. Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366, 59–70 (2015).

    CAS  Google Scholar 

  38. Hegab, H. M. & Zou, L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membrane Sci. 484, 95–106 (2015).

    CAS  Google Scholar 

  39. Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    CAS  Google Scholar 

  40. Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Google Scholar 

  41. Goh, P. S. & Ismail, A. F. Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015).

    CAS  Google Scholar 

  42. Yampolskii, Y. Polymeric gas separation membranes. Macromolecules 45, 3298–3311 (2012).

    CAS  Google Scholar 

  43. Robeson, L. M. The upper bound revisited. J. Membrane Sci. 320, 390–400 (2008).

    CAS  Google Scholar 

  44. Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32, 375–380 (1999).

    CAS  Google Scholar 

  45. Bernardo, P., Drioli, E. & Golemme, G. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48, 4638–4663 (2009).

    CAS  Google Scholar 

  46. Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 344, 289–292 (2014). This study demonstrated fabrication of arrays of nanopores in graphene membranes using a focused ion beam to realize high permeance.

    CAS  Google Scholar 

  47. Szymczyk, A. & Fievet, P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. J. Membrane Sci. 252, 77–88 (2005).

    CAS  Google Scholar 

  48. Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9, 4019–4024 (2009). This simulation study suggested the potential of nanoporous graphene for gas separation with high selectivity and permeance.

    CAS  Google Scholar 

  49. Du, H. et al. Separation of hydrogen and nitrogen gases with porous graphene membrane. J. Phys. Chem. C 115, 23261–23266 (2011).

    CAS  Google Scholar 

  50. Schrier, J. Helium separation using porous graphene membranes. J. Phys. Chem. Lett. 1, 2284–2287 (2010).

    CAS  Google Scholar 

  51. Blankenburg, S. et al. Porous graphene as an atmospheric nanofilter. Small 6, 2266–2271 (2010).

    CAS  Google Scholar 

  52. Huang, C., Wu, H., Deng, K., Tang, W. & Kan, E. Improved permeability and selectivity in porous graphene for hydrogen purification. Phys. Chem. Chem. Phys. 16, 25755–25759 (2014).

    CAS  Google Scholar 

  53. Brockway, A. M. & Schrier, J. Noble gas separation using PG-ES X (X = 1, 2, 3) nanoporous two-dimensional polymers. J. Phys. Chem. C 117, 393–402 (2013).

    CAS  Google Scholar 

  54. Solvik, K., Weaver, J. A., Brockway, A. M. & Schrier, J. Entropy-driven molecular separations in 2D-nanoporous materials, with application to high-performance paraffin/olefin membrane separations. J. Phys. Chem. C 117, 17050–17057 (2013).

    CAS  Google Scholar 

  55. Tao, Y. et al. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl. Mater. Interfaces 6, 8048–8058 (2014).

    CAS  Google Scholar 

  56. Schrier, J. Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl. Mater. Interfaces 4, 3745–3752 (2012).

    CAS  Google Scholar 

  57. Cranford, S. W. & Buehler, M. J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 4, 4587–4593 (2012).

    CAS  Google Scholar 

  58. Jiao, Y. et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem. Commun. 47, 11843–11845 (2011).

    CAS  Google Scholar 

  59. Zhang, H. et al. Tunable hydrogen separation in spsp2 hybridized carbon membranes: a first-principles prediction. J. Phys. Chem. C 116, 16634–16638 (2012).

    CAS  Google Scholar 

  60. Schrier, J. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl. Mater. Interfaces 3, 4451–4458 (2011).

    CAS  Google Scholar 

  61. Li, Y., Zhou, Z., Shen, P. & Chen, Z. Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chem. Commun. 46, 3672–3674 (2010).

    CAS  Google Scholar 

  62. Schrier, J. & McClain, J. Thermally-driven isotope separation across nanoporous graphene. Chem. Phys. Lett. 521, 118–124 (2012).

    CAS  Google Scholar 

  63. Tian, Z., Dai, S. & Jiang, D. Expanded porphyrins as two-dimensional porous membranes for CO2 separation. ACS Appl. Mater. Interfaces 7, 13073–13079 (2015).

    CAS  Google Scholar 

  64. Zhang, Y. et al. Hexagonal boron nitride with designed nanopores as a high-efficiency membrane for separating gaseous hydrogen from methane. J. Phys. Chem. C 119, 19826–19831 (2015).

    CAS  Google Scholar 

  65. Liu, H., Dai, S. & Jiang, D. Permeance of H2 through porous graphene from molecular dynamics. Solid State Commun. 175–176, 101–105 (2013).

    Google Scholar 

  66. Jiao, Y., Du, A., Hankel, M. & Smith, S. C. Modelling carbon membranes for gas and isotope separation. Phys. Chem. Chem. Phys. 15, 4832–4843 (2013).

    CAS  Google Scholar 

  67. Drahushuk, L. W. & Strano, M. S. Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28, 16671–16678 (2012).

    CAS  Google Scholar 

  68. Sun, C. et al. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30, 675–682 (2014).

    CAS  Google Scholar 

  69. Hauser, A. W. & Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 3, 209–213 (2012).

    CAS  Google Scholar 

  70. Hankel, M., Jiao, Y., Du, A., Gray, S. K. & Smith, S. C. Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation. J. Phys. Chem. C 116, 6672–6676 (2012).

    CAS  Google Scholar 

  71. Hu, W., Wu, X., Li, Z. & Yang, J. Porous silicene as a hydrogen purification membrane. Phys. Chem. Chem. Phys. 15, 5753–5757 (2013).

    CAS  Google Scholar 

  72. Lalitha, M., Lakshmipathi, S. & Bhatia, S. K. Defect-mediated reduction in barrier for helium tunneling through functionalized graphene nanopores. J. Phys. Chem. C 119, 20940–20948 (2015).

    CAS  Google Scholar 

  73. Au, H. Molecular Dynamics Simulation of Nanoporous Graphene for Selective Gas Separation (Massachusetts Institute of Technology, 2012).

    Google Scholar 

  74. Lei, G., Liu, C., Xie, H. & Song, F. Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem. Phys. Lett. 599, 127–132 (2014).

    CAS  Google Scholar 

  75. Liu, H., Chen, Z., Dai, S. & Jiang, D. Selectivity trend of gas separation through nanoporous graphene. J. Solid State Chem. 224, 2–6 (2015).

    CAS  Google Scholar 

  76. Liu, H., Dai, S. & Jiang, D. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale 5, 9984–9987 (2013).

    CAS  Google Scholar 

  77. Shan, M. et al. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4, 5477–5482 (2012).

    CAS  Google Scholar 

  78. Sun, C., Wen, B. & Bai, B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 138, 616–621 (2015).

    CAS  Google Scholar 

  79. Wen, B., Sun, C. & Bai, B. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Phys. Chem. Chem. Phys. 17, 23619–23626 (2015).

    CAS  Google Scholar 

  80. Wu, T. et al. Fluorine-modified porous graphene as membrane for CO2 /N2 separation: molecular dynamic and first-principles simulations. J. Phys. Chem. C 118, 7369–7376 (2014).

    CAS  Google Scholar 

  81. Qin, X., Meng, Q., Feng, Y. & Gao, Y. Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf. Sci. 607, 153–158 (2013).

    CAS  Google Scholar 

  82. Hauser, A. W. & Schwerdtfeger, P. Methane-selective nanoporous graphene membranes for gas purification. Phys. Chem. Chem. Phys. 14, 13292–13298 (2012).

    CAS  Google Scholar 

  83. Ambrosetti, A. & Silvestrelli, P. L. Gas separation in nanoporous graphene from first principle calculations. J. Phys. Chem. C 118, 19172–19179 (2014).

    CAS  Google Scholar 

  84. Lu, R. et al. Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous graphene. J. Phys. Chem. C 116, 21291–21296 (2012).

    CAS  Google Scholar 

  85. Hauser, A. W., Schrier, J. & Schwerdtfeger, P. Helium tunneling through nitrogen-functionalized graphene pores: pressure- and temperature-driven approaches to isotope separation. J. Phys. Chem. C 116, 10819–10827 (2012).

    CAS  Google Scholar 

  86. Wang, L. et al. Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat. Nanotech. 10, 785–790 (2015).

    CAS  Google Scholar 

  87. Drahushuk, L. W., Wang, L., Koenig, S. P., Bunch, J. S. & Strano, M. S. Analysis of time-varying, stochastic gas transport through graphene membranes. ACS Nano 10, 786–795 (2016).

    CAS  Google Scholar 

  88. Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotech. 10, 1053–1057 (2015).

    CAS  Google Scholar 

  89. Zhu, C., Li, H., Zeng, X. C., Wang, E. G. & Meng, S. Quantized water transport: ideal desalination through graphyne-4 membrane. Sci. Rep. 3, 3163 (2013).

    Google Scholar 

  90. Xue, M., Qiu, H. & Guo, W. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24, 505720 (2013).

    Google Scholar 

  91. Bartolomei, M. et al. Penetration barrier of water through graphynes' pores: first-principles predictions and force field optimization. J. Phys. Chem. Lett. 5, 751–755 (2014).

    CAS  Google Scholar 

  92. Kou, J., Zhou, X., Lu, H., Wu, F. & Fan, J. Graphyne as the membrane for water desalination. Nanoscale 6, 1865–1870 (2014).

    CAS  Google Scholar 

  93. Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    CAS  Google Scholar 

  94. Lin, L.-C., Choi, J. & Grossman, J. C. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem. Commun. 51, 14921–14924 (2015).

    CAS  Google Scholar 

  95. Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).

    CAS  Google Scholar 

  96. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012). This molecular dynamics study showed the potential of graphene for water desalination with high salt rejection and high permeance.

    CAS  Google Scholar 

  97. Li, W., Yang, Y., Weber, J. K., Zhang, G. & Zhou, R. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano 10, 1829–1835 (2016).

    CAS  Google Scholar 

  98. Cohen-Tanugi, D. & Grossman, J. C. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014).

    Google Scholar 

  99. Azamat, J., Khataee, A. & Joo, S. W. Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem. Eng. Sci. 127, 285–292 (2015).

    CAS  Google Scholar 

  100. Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 1, 1590–1594 (2010).

    CAS  Google Scholar 

  101. Lin, S. & Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 5, 11801–11807 (2013).

    CAS  Google Scholar 

  102. Suk, M. E. & Aluru, N. R. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 3, 9365–9372 (2013).

    CAS  Google Scholar 

  103. Song, Z. & Xu, Z. Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015).

    CAS  Google Scholar 

  104. Zhang, X. & Gai, J.-G. Single-layer graphyne membranes for super-excellent brine separation in forward osmosis. RSC Adv. 5, 68109–68116 (2015).

    CAS  Google Scholar 

  105. Gai, J.-G., Gong, X.-L., Wang, W.-W., Zhang, X. & Kang, W.-L. An ultrafast water transport forward osmosis membrane: porous graphene. J. Mater. Chem. A 2, 4023–4028 (2014).

    CAS  Google Scholar 

  106. Gai, J. & Gong, X. Zero internal concentration polarization FO membrane: functionalized graphene. J. Mater. Chem. A 2, 425–429 (2014).

    CAS  Google Scholar 

  107. He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).

    CAS  Google Scholar 

  108. Kang, Y. et al. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 6, 10666–10672 (2014).

    CAS  Google Scholar 

  109. Sint, K., Wang, B. & Kra´l, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 131, 9600–9600 (2009).

    CAS  Google Scholar 

  110. Suk, M. E. & Aluru, N. R. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140, 084707 (2014).

    Google Scholar 

  111. Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).

    Google Scholar 

  112. Zhu, C., Li, H. & Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 141, 18C528 (2014).

    Google Scholar 

  113. Kou, J. et al. Water permeation through single-layer graphyne membrane. J. Chem. Phys. 139, 064705 (2013).

    Google Scholar 

  114. Chandra Shekar, S. & Swathi, R. S. Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J. Phys. Chem. A 117, 8632–8641 (2013).

    CAS  Google Scholar 

  115. Garnier, L., Szymczyk, A., Malfreyt, P., & Ghoufi, A. Physics behind water transport through nanoporous boron nitride and graphene. J. Phys. Chem. Lett. 7, 3371–3376 (2016).

    CAS  Google Scholar 

  116. Park, H. G. & Jung, Y. Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. 43, 565–76 (2014).

    CAS  Google Scholar 

  117. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010). This paper reported ionic transport and DNA sensing across graphene nanopores, and experimentally showed hydration energy-dependent ion transport across graphene.

    CAS  Google Scholar 

  118. Schneider, G. F. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  119. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  120. O'Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012).

    CAS  Google Scholar 

  121. O'Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    CAS  Google Scholar 

  122. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–64 (2015). This paper demonstrated facile pore creation in graphene using oxygen plasma to realize water desalination membranes.

    CAS  Google Scholar 

  123. O'Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015). This paper reported nanofiltration across graphene enabled by defect sealing and creation of a high density of sub-nanometer pores.

    CAS  Google Scholar 

  124. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    CAS  Google Scholar 

  125. Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).

    CAS  Google Scholar 

  126. Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  Google Scholar 

  127. Kuan, A. T., Lu, B., Xie, P., Szalay, T. & Golovchenko, J. A. Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl. Phys. Lett. 106, 203109 (2015).

    Google Scholar 

  128. Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS  Google Scholar 

  129. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Google Scholar 

  130. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    CAS  Google Scholar 

  131. Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016). This study experimentally demonstrated hydrogen isotope separation across atomically thin membranes.

    CAS  Google Scholar 

  132. Walker, M. I., Braeuninger-Weimer, P., Weatherup, R. S., Hofmann, S. & Keyser, U. F. Measuring the proton selectivity of graphene membranes. Appl. Phys. Lett. 107, 213104 (2015).

    Google Scholar 

  133. Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 6, 6539 (2015).

    CAS  Google Scholar 

  134. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2014).

    Google Scholar 

  135. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Google Scholar 

  136. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5, 574–578 (2010).

    CAS  Google Scholar 

  137. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 23112 (2013). This paper reported the synthesis of graphene and its transfer to a polymeric support in a scalable roll-to-roll process.

    Google Scholar 

  138. Zaretski, A. V & Lipomi, D. J. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production. Nanoscale 7, 9963–9969 (2015).

    CAS  Google Scholar 

  139. Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).

    CAS  Google Scholar 

  140. Alemán, B. et al. Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762–4768 (2010).

    Google Scholar 

  141. Lehtinen, O. et al. Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods B 269, 1327–1331 (2011).

    CAS  Google Scholar 

  142. Lehtinen, O., Kotakoski, J., Krasheninnikov, A. V. & Keinonen, J. Cutting and controlled modification of graphene with ion beams. Nanotechnology 22, 175306 (2011).

    CAS  Google Scholar 

  143. Lehtinen, O. et al. Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation. Nanoscale 6, 6569–6576 (2014).

    CAS  Google Scholar 

  144. Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    CAS  Google Scholar 

  145. Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    CAS  Google Scholar 

  146. Tracz, A., Kalachev, A., Wegner, G. & Rabe, J. P. Control over nanopits on the basal plane of graphite by remote argon plasma and subsequent thermal oxidation. Langmuir 11, 2840–2842 (1995).

    CAS  Google Scholar 

  147. Zabihi, Z. & Araghi, H. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: a molecular dynamics simulation study. Nucl. Instrum. Methods B 343, 48–51 (2015).

    CAS  Google Scholar 

  148. Rozada, R. et al. Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. Carbon 79, 664–669 (2014).

    CAS  Google Scholar 

  149. Xie, G. et al. A general route towards defect and pore engineering in graphene. Small 10, 2280–2284 (2014).

    CAS  Google Scholar 

  150. Yamada, Y. et al. Subnanometer vacancy defects introduced on graphene by oxygen gas. J. Am. Chem. Soc. 136, 2232–2235 (2014).

    CAS  Google Scholar 

  151. Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Google Scholar 

  152. Fan, Z. et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50, 1699–1703 (2012).

    CAS  Google Scholar 

  153. Bagri, A., Grantab, R., Medhekar, N. V & Shenoy, V. B. Stability and formation mechanisms of carbonyl-and hydroxyl-decorated holes in graphene oxide. J. Phys. Chem. C 114, 12053–12061 (2010).

    CAS  Google Scholar 

  154. Tracz, A., Wegner, G. & Rabe, J. P. Scanning tunneling microscopy study of graphite oxidation in ozone-air mixtures. Langmuir 19, 6807–6812 (2003).

    CAS  Google Scholar 

  155. Liu, L. et al. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8, 1965–1970 (2008).

    CAS  Google Scholar 

  156. Tao, H., Moser, J., Alzina, F., Wang, Q. & Sotomayor-Torres, C. M. The morphology of graphene sheets treated in an ozone generator. J. Phys. Chem. C 115, 18257–18260 (2011).

    CAS  Google Scholar 

  157. Lehtinen, O. et al. Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81, 153401 (2010).

    Google Scholar 

  158. Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotech. 10, 1070–1076 (2015).

    CAS  Google Scholar 

  159. He, K. et al. Controlled formation of closed-edge nanopores in graphene. Nanoscale 7, 11602–11610 (2015).

    CAS  Google Scholar 

  160. Bai, J., Zhong, X., Jiang, S., Huang, Y. & Duan, X. Graphene nanomesh. Nat. Nanotech. 5, 190–194 (2010).

    CAS  Google Scholar 

  161. Cun, H., Iannuzzi, M., Hemmi, A., Osterwalder, J. & Greber, T. Two-nanometer voids in single-layer hexagonal boron nitride: formation via the 'can-opener' effect and annihilation by self-healing. ACS Nano 8, 7423–7431 (2014).

    CAS  Google Scholar 

  162. Lin, L.-C. & Grossman, J. C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 6, 8335 (2015).

    CAS  Google Scholar 

  163. Wang, W. L. et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 14, 450–455 (2014).

    CAS  Google Scholar 

  164. Zhou, D., Cui, Y., Xiao, P.-W., Jiang, M.-Y. & Han, B.-H. A general and scalable synthesis approach to porous graphene. Nat. Commun. 5, 4716 (2014).

    CAS  Google Scholar 

  165. Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  Google Scholar 

  166. Liu, X.-H., Guan, C.-Z., Wang, D. & Wan, L.-J. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv. Mater. 26, 6912–6920 (2014).

    CAS  Google Scholar 

  167. Cai, S.-L. et al. The organic flatland-recent advances in synthetic 2D organic layers. Adv. Mater. 27, 5762–5770 (2015).

    CAS  Google Scholar 

  168. Peng, Q. et al. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014).

    CAS  Google Scholar 

  169. Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).

    CAS  Google Scholar 

  170. Murray, D. J. et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 137, 3450–3453 (2015).

    CAS  Google Scholar 

  171. Kidambi, P. R. et al. The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J. Phys. Chem. C 116, 22492–22501 (2012).

    CAS  Google Scholar 

  172. Wei, D. C. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    CAS  Google Scholar 

  173. Boutilier, M. S. H. et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8, 841–849 (2014).

    CAS  Google Scholar 

  174. Liu, Y. & Chen, X. Mechanical properties of nanoporous graphene membrane. J. Appl. Phys. 115, 034303 (2014).

    Google Scholar 

  175. Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).

    CAS  Google Scholar 

  176. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Google Scholar 

  177. Koenig, S. P., Boddeti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotech. 6, 543–546 (2011).

    CAS  Google Scholar 

  178. Won, M.-S., Penkov, O. V. & Kim, D.-E. Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding. Carbon 54, 472–481 (2013).

    CAS  Google Scholar 

  179. Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    CAS  Google Scholar 

  180. Kafiah, F. M. et al. Monolayer graphene transfer onto polypropylene and polyvinylidenedifluoride microfiltration membranes for water desalination. Desalination 388, 29–37 (2016).

    CAS  Google Scholar 

  181. Ingham, C. J., ter Maat, J. & de Vos, W. M. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol. Adv. 30, 1089–1099 (2012).

    CAS  Google Scholar 

  182. Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Google Scholar 

  183. Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Google Scholar 

  184. Zhao, D. & Yu, S. A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning. Desalin. Water Treat. 5, 870–891 (2015).

    CAS  Google Scholar 

  185. Darvishi, M. & Foroutan, M. Mechanism of water separation from a gaseous mixture via nanoporous graphene using molecular dynamics simulation. RSC Adv. 5, 81282–81294 (2015).

    CAS  Google Scholar 

  186. Zamani, F., Chew, J. W., Akhondi, E., Krantz, W. B. & Fane, A. G. Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: a review. Desalination 356, 328–348 (2015).

    CAS  Google Scholar 

  187. Gethers, M. L. et al. Holey graphene as a weed barrier for molecules. ACS Nano 9, 10909–10915 (2015).

    CAS  Google Scholar 

  188. Böhm, S. Graphene against corrosion. Nat. Nanotech. 9, 741–742 (2014).

    Google Scholar 

  189. Zurutuza, A. & Marinelli, C. Challenges and opportunities in graphene commercialization. Nat. Nanotech. 9, 730–734 (2014).

    CAS  Google Scholar 

  190. Lee, J. & Aluru, N. R. Water-solubility-driven separation of gases using graphene membrane. J. Membrane Sci. 428, 546–553 (2013).

    CAS  Google Scholar 

  191. Georgakilas, V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012).

    CAS  Google Scholar 

  192. Wang, L. et al. Ultrathin oxide films by atomic layer deposition on graphene. Nano Lett. 12, 3706–3710 (2012).

    CAS  Google Scholar 

  193. Luo, Y., Harder, E., Faibish, R. S. & Roux, B. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane. J. Membrane Sci. 384, 1–9 (2011).

    CAS  Google Scholar 

  194. Kowalczyk, P., Gauden, P. A., Terzyk, A. P. & Furmaniak, S. Microscopic model of carbonaceous nanoporous molecular sieves — anomalous transport in molecularly confined spaces. Phys. Chem. Chem. Phys. 12, 11351–11361 (2010).

    CAS  Google Scholar 

  195. Kim, M., Ha, Y.-C., Nguyen, T. N., Choi, H. Y. & Kim, D. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures. Nanotechnology 24, 505304 (2013).

    Google Scholar 

  196. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Google Scholar 

  197. Angelova, P. et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7, 6489–6497 (2013).

    CAS  Google Scholar 

  198. Wang, E. N. & Karnik, R. Water desalination: graphene cleans up water. Nat. Nanotech. 7, 552–554 (2012).

    CAS  Google Scholar 

  199. Suk, M. E., Raghunathan, A. V. & Aluru, N. R. Fast reverse osmosis using boron nitride and carbon nanotubes. Appl. Phys. Lett. 92, 133120 (2008).

    Google Scholar 

  200. Zhu, F., Tajkhorshid, E. & Schulten, K. Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83, 154–160 (2002).

    CAS  Google Scholar 

  201. Zhu, F., Tajkhorshid, E. & Schulten, K. Theory and simulation of water permeation in aquaporin-1. Biophys. J. 86, 50–57 (2004).

    CAS  Google Scholar 

  202. Wells, D. B., Belkin, M., Comer, J. & Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117–4123 (2012).

    CAS  Google Scholar 

  203. Sathe, C., Zou, X., Leburton, J.-P. & Schulten, K. Computational investigation of DNA detection using graphene nanopores. ACS Nano 5, 8842–8851 (2011).

    CAS  Google Scholar 

  204. Garaj, S., Liu, S., Golovchenko, J. A. & Branton, D. Molecule-hugging graphene nanopores. Proc. Natl Acad. Sci. USA 110, 12192–12196 (2013).

    CAS  Google Scholar 

  205. Reverse Osmosis (RO) Membrane (SterliTech Corporation, 2016); https://www.sterlitech.com/reverse-osmosis-ro-membrane.html

  206. Xu, P. et al. Rejection of emerging organic micropollutants in nanofiltration–reverse osmosis membrane applications. Water Environ. Res. 77, 40–48 (2005).

    CAS  Google Scholar 

  207. Comerton, A. M., Andrews, R. C., Bagley, D. M. & Yang, P. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Memb. Sci. 303, 267–277 (2007).

    CAS  Google Scholar 

  208. van der Bruggen, B. & Vandecasteele, C. Flux decline during nanofiltration of organic components in aqueous solution. Environ. Sci. Technol. 35, 3535–3540 (2001).

    CAS  Google Scholar 

  209. Ahmad, A. L., Tan, L. S. & Shukor, S. R. A. Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J. Hazard. Mater. 151, 71–77 (2008).

    CAS  Google Scholar 

  210. Ultrafiltration (UF) Membranes (SterliTech Corporation, 2016); https://www.sterlitech.com/ultrafiltration-uf-membrane.html

  211. Celik, E., Park, H., Choi, H. H. & Choi, H. H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45, 274–282 (2011).

    CAS  Google Scholar 

  212. de Vos, R. M. High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710–1711 (1998).

    CAS  Google Scholar 

  213. Elyassi, B., Sahimi, M. & Tsotsis, T. T. Silicon carbide membranes for gas separation applications. J. Membr. Sci. 288, 290–297 (2007).

    CAS  Google Scholar 

  214. Guo, H., Zhu, G., Hewitt, I. J. & Qiu, S. 'Twin copper source' growth of metal−organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131, 1646–1647 (2009).

    CAS  Google Scholar 

  215. Rezac, M. E. & Schöberl, B. Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends. J. Memb. Sci. 156, 211–222 (1999).

    CAS  Google Scholar 

  216. Tang, Z., Dong, J. & Nenoff, T. M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir 25, 4848–4852 (2009).

    CAS  Google Scholar 

  217. Li, P. et al. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 495, 130–168 (2015).

    CAS  Google Scholar 

  218. Yilmaz, G. & Keskin, S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO2, CH4, and H2 separations using molecular simulations. Ind. Eng. Chem. Res. 51, 14218–14228 (2012).

    CAS  Google Scholar 

  219. Kang, Z. et al. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy Environ. Sci. 7, 4053–4060 (2014).

    CAS  Google Scholar 

  220. Kim, S., Jinschek, J. R., Chen, H., Sholl, D. S. & Marand, E. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Lett. 7, 2806–2811 (2007).

    CAS  Google Scholar 

  221. Kim, S., Pechar, T. W. & Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 192, 330–339 (2006).

    CAS  Google Scholar 

  222. Yu, M., Funke, H. H., Falconer, J. L. & Noble, R. D. High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9, 225–229 (2009).

    CAS  Google Scholar 

  223. Li, Y., Liang, F., Bux, H., Yang, W. & Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Memb. Sci. 354, 48–54 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research collaborations and helpful discussions with S. C. O'Hern, T. Jain, T. Laoui, J.-C. Idrobo and J. Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Karnik.

Ethics declarations

Competing interests

R.K. is a co-founder and has equity in a start-up company aimed at commercializing graphene membranes.

Supplementary information

Supplementary Information

Supplementary Information (PDF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Boutilier, M., Kidambi, P. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotech 12, 509–522 (2017). https://doi.org/10.1038/nnano.2017.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing