Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Terahertz quantum-cascade lasers

Abstract

Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survey of the reported peak performance of terahertz QC lasers.
Figure 2: Conduction-band diagrams for major terahertz QC design schemes.
Figure 3: Terahertz QC-laser waveguides.
Figure 4: Various terahertz cavities.
Figure 5: High-temperature performance.
Figure 6: Terahertz imaging with a QC laser.

Similar content being viewed by others

References

  1. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).

    ADS  Google Scholar 

  2. Woolard, D. L., Brown, E. R., Pepper, M. & Kemp, M. Terahertz frequency sensing and imaging: A time of reckoning future applications? Proc. IEEE 93, 1722–1743 (2005).

    Google Scholar 

  3. Mehdi, I. et al. Terahertz multiplier circuits in 2006 IEEE MTT-S International Microwave Symposium Digest 341–344 (IEEE, San Fransisco, California, 2006).

    Google Scholar 

  4. Maestrini, A. et al. A 1.7–1.9 THz local oscillator source. IEEE Microwave Wireless Components Lett. 14, 253–255 (2004).

    Google Scholar 

  5. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    ADS  Google Scholar 

  6. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nature Mater. 1, 26–33 (2002).

    ADS  Google Scholar 

  7. Sensing with Terahertz Radiation (ed. Mittleman, D.) (Springer, Berlin, 2003).

    Google Scholar 

  8. Terahertz Sensing Technology Vol. 1 (Selected Topics in Electronics and Systems Vol. 30) (eds Woolard, D. L., Leorop, W. R. & Shur, M. S.) (World Scientific, Singapore, 2003).

  9. Terahertz Sensing Technology Vol. 2 (Selected Topics in Electronics and Systems Vol. 32) (eds Woolard, D. L., Leorop, W. R. & Shur, M. S.) (World Scientific, Singapore, 2004).

  10. Hübers, H.-W. et al. Terahertz emission spectra of optically pumped silicon lasers. Phys. Status Solidi (b) 233, 191–196 (2002).

    ADS  Google Scholar 

  11. (eds Gornik, E. & Andronov, A. A, Special issue - Far-infrared semiconductor lasers) Opt. Quant. Electron. 23, (1991).

  12. Bründermann, E., Chamberlin, D. R. & Haller, E. E. High duty cycle and continuous terahertz emission from germanium. Appl. Phys. Lett. 76, 2991–2993 (2000).

    ADS  Google Scholar 

  13. Kazarinov, R. F. & Suris, R. A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semiconductors 5, 707–709 (1971).

    Google Scholar 

  14. Borenstain, S. I. & Katz, J. Evaluation of the feasibility of a far-infrared laser based on intersubband transitions in GaAs quantum wells. Appl. Phys. Lett. 55, 654–656 (1989).

    ADS  Google Scholar 

  15. Hu, Q. & Feng, S. Feasibility of far-infrared lasers using multiple semiconductor quantum wells. Appl. Phys. Lett. 59, 2923–2925 (1991).

    ADS  Google Scholar 

  16. Helm, M., Colas, E., England, P., DeRosa, F. & Allen Jr, S. J. Observation of grating-induced intersubband emission from GaAs/AlGaAs superlattices. Appl. Phys. Lett. 53, 1714–1716 (1988).

    ADS  Google Scholar 

  17. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    ADS  Google Scholar 

  18. Revin, D. G. et al. InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm. Appl. Phys. Lett. 90, 021108 (2007).

    ADS  Google Scholar 

  19. Semtsiv, M. P., Wienold, M., Dressler, S. & Masselink, W. T. Short-wavelength (λ ≈ 3.05 μm) InP-based strain-compensated quantum-cascade laser. Appl. Phys. Lett. 90, 051111 (2007).

    ADS  Google Scholar 

  20. Colombelli, R. et al. Far-infared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001).

    ADS  Google Scholar 

  21. Yu, J. S., Evans, A., Slivken, S., Darvish, S. R. & Razeghi, M. Temperature dependent characteristics of λ 3.8μm room-temperature continuous-wave quantum-casacde lasers. Appl. Phys. Lett. 88, 251118 (2006).

    ADS  Google Scholar 

  22. Slivken, S., Evans, A., Zhang, W. & Razeghi, M. High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm. Appl. Phys. Lett. 90, 151115 (2007).

    ADS  Google Scholar 

  23. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    ADS  Google Scholar 

  24. Rochat, M. et al. Low-threshold terahertz quantum-cascade lasers. Appl. Phys. Lett. 81, 1381–1383 (2002).

    ADS  Google Scholar 

  25. Williams, B. S., Callebaut, H., Kumar, S., Hu, Q. & Reno, J. L. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett. 82, 1015–1017 (2003).

    ADS  Google Scholar 

  26. Liu, H. C. et al. Effect of doping concentration on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett. 87, 141102 (2005).

    ADS  Google Scholar 

  27. Fan, J. A. et al. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express 14, 11672–11680 (2006).

    ADS  Google Scholar 

  28. Benz, A. et al. Influence of doping on the performance of terahertz quantum-cascade lasers. Appl. Phys. Lett. 90, 101107 (2007).

    ADS  Google Scholar 

  29. Alton, J. et al. Optimum resonant tunneling injection and influence of doping density on the performance of THz bound-to-continuum cascade lasers. Proc. SPIE 5727, 65–73 (2005).

    ADS  Google Scholar 

  30. Dhillon, S. et al. Ultralow threshold current terahertz quantum cascade lasers based double-metal buried strip waveguides. Appl. Phys. Lett. 87, 071107 (2005).

    ADS  Google Scholar 

  31. Tamosiunas, V. et al. Terahertz quantum cascade lasers in a magnetic field. Appl. Phys. Lett. 83, 3873–3875 (2003).

    ADS  Google Scholar 

  32. Vitiello, M. S., Scamarcio, G., Spagnolo, V., Dhillon, S. S. & Sirtori, C. Terahertz quantum cascade lasers with large wall-plug efficiency. Appl. Phys. Lett. 90, 191115 (2007).

    ADS  Google Scholar 

  33. Faist, J., Scalari, G., Walther, C. & Fischer, M. in 2007 Materials Research Society (MRS) Spring Meeting, San Fransisco, California, April 2007 CC7.2 (2007).

    Google Scholar 

  34. Scalari, G., Walther, C., Faist, J., Beere, H. & Ritchie, D. Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz. Appl. Phys. Lett. 88, 141102 (2006).

    ADS  Google Scholar 

  35. Lee, A. W. M. et al. Real-time terahertz imaging over a standoff distance (> 25 meters). Appl. Phys. Lett. 89, 141125 (2006).

    ADS  Google Scholar 

  36. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005).

    ADS  Google Scholar 

  37. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. High-power terahertz quantum cascade lasers. Electron. Lett. 42, 89–91 (2006).

    Google Scholar 

  38. Xu, B., Hu, Q. & Melloch, M. R. Electrically pumped tunable terahertz emitter based on intersubband transition. Appl. Phys. Lett. 71, 440–442 (1997).

    ADS  Google Scholar 

  39. Williams, B. S., Xu, B., Hu, Q. & Melloch, M. R. Narrow-linewidth terahertz intersubband emission from three-level systems. Appl. Phys. Lett. 75, 2927–2929 (1999).

    ADS  Google Scholar 

  40. Williams, B. S., Callebaut, H., Hu, Q. & Reno, J. L. Magnetotunneling spectroscopy of resonant anticrossing in terahertz intersubband emitters. Appl. Phys. Lett. 79, 4444–4446 (2001).

    ADS  Google Scholar 

  41. Rochat, M., Faist, J., Beck, M., Oesterle, U. & Ilegems, M. Far-infrared (λ = 88 μm) electroluminescence in a quantum cascade structure. Appl. Phys. Lett. 73, 3724–3726 (1998).

    ADS  Google Scholar 

  42. Blaser, S., Rochat, M., Beck, M. & Faist, J. Far-infrared emission and stark-cyclotron resonances in a quantum-cascade structure based on photon-assisted tunneling transition. Phys. Rev. B 61, 8369–8374 (2000).

    ADS  Google Scholar 

  43. Menon, V. M. et al. Dual-frequency quantum-cascade terahertz emitter. Appl. Phys. Lett. 80, 2454–2456 (2002).

    ADS  Google Scholar 

  44. Ulrich, J. et al. Terahertz quantum cascade structures: Intra-versus interwell transition. Appl. Phys. Lett. 77, 1928–1930 (2000).

    ADS  Google Scholar 

  45. Colombelli, R. et al. Terahertz electroluminescence from superlattice quantum cascade structures. J. Appl. Phys. 91, 3526–3529 (2002).

    ADS  Google Scholar 

  46. Ulrich, J., Zobl, R., Unterrainer, K., Strasser, G. & Gornik, E. Magnetic-field-enhanced quantum-cascade emission. Appl. Phys. Lett. 76, 19–21 (2000).

    ADS  Google Scholar 

  47. Faist, J., Capasso, F., Sirtori, C., Sivco, D. & Cho, A. in Intersubband transitions in quantum wells: Physics and device applications II Vol. 66 (eds Liu, H. C. & Capasso, F.) Ch. 1, 1–83 (Academic, San Diego, 2000).

    Google Scholar 

  48. Köhler, R. et al. Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade. Appl. Phys. Lett. 84, 1266–1268 (2004).

    ADS  Google Scholar 

  49. Scalari, G., Hoyler, N., Giovannini, M. & Faist, J. Terahertz bound-to-continuum quantum cascade lasers based on optical-phonon scattering extraction. Appl. Phys. Lett. 86, 181101 (2005).

    ADS  Google Scholar 

  50. Walther, C., Scalari, G., Faist, J., Beere, H. & Ritchie, D. Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett. 89, 231121 (2006).

    ADS  Google Scholar 

  51. Shah, J. in Hot carriers in semiconductor nanostructures (ed. Shah, J.) Ch. 4, 169–188 (Academic, San Diego, 1992).

    Google Scholar 

  52. Faist, J., Beck, M., Aellen, T. & Gini, E. Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78, 147–149 (2001).

    ADS  Google Scholar 

  53. Scalari, G. et al. Far-infrared λ 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K. Appl. Phys. Lett. 82, 3165–3167 (2003).

    ADS  Google Scholar 

  54. Hu, Q. et al. Resonant-phonon-assisted THz quantum-cascade lasers with metal-metal waveguides. Semicond. Sci. Technol. 20, S228–S236 (2005).

    ADS  Google Scholar 

  55. Stroscio, M. A., Kisin, M., Belenky, G. & Luryi, S. Phonon enhanced inverse population in asymmetric double quantum wells. Appl. Phys. Lett. 75, 3258–3260 (1999).

    ADS  Google Scholar 

  56. Ulrich, J. et al. Terahertz-electroluminescence in a quantum cascade structure. Physica B 272, 216–218 (1999).

    ADS  Google Scholar 

  57. Kohen, S., Williams, B. S. & Hu, Q. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J. Appl. Phys. 97, 053106 (2005).

    ADS  Google Scholar 

  58. Williams, B. S., Kumar, S., Callebaut, H., Hu, Q. & Reno, J. L. Terahertz quantum-cascade laser at λ ≈ 100 μm using metal waveguide for mode confinement. Appl. Phys. Lett. 83, 2124–2126 (2003).

    ADS  Google Scholar 

  59. Unterrainer, K. et al. Quantum cascade lasers with double metal-semiconductor waveguide resonators. Appl. Phys. Lett. 80, 3060–3062 (2002).

    ADS  Google Scholar 

  60. Mahler, L. et al. High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Appl. Phys. Lett. 87, 181101 (2005).

    ADS  Google Scholar 

  61. Ajili, L. et al. Loss-coupled distributed feedback far-infrared quantum cascade lasers. Electron. Lett. 41, 419–421 (2005).

    Google Scholar 

  62. Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Opt. Lett. 30, 2909–2911 (2005).

    ADS  Google Scholar 

  63. Demichel, O. et al. Surface plasmon photonic structures in terahertz quantum cascade lasers. Opt. Express 14, 5335–5345 (2006).

    ADS  Google Scholar 

  64. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. Opt. Express 15, 113–128 (2007).

    ADS  Google Scholar 

  65. Schubert, M. & Rana, F. Analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quant. Electron. 42, 257–265 (2006).

    ADS  Google Scholar 

  66. Dunbar, L. A. et al. Small optical volume terahertz emitting microdisk quantum cascade lasers. Appl. Phys. Lett. 90, 141114 (2007).

    ADS  Google Scholar 

  67. Fasching, G. et al. Terahertz microcavity quantum-cascade lasers. Appl. Phys. Lett. 87, 211112 (2005).

    ADS  Google Scholar 

  68. Chassagneux, Y. et al. Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range. Appl. Phys. Lett. 90, 091113 (2007).

    ADS  Google Scholar 

  69. Dhillon, S. et al. THz sideband generation at telecom wavelengths in a GaAs-based quantum cascade laser. Appl. Phys. Lett. 87, 071101 (2005).

    ADS  Google Scholar 

  70. Dhillon, S. et al. Terahertz transfer onto a telecom optical carrier. Nature Photon. 1, 411–415 (2007).

    ADS  Google Scholar 

  71. Adam, A. J. L. et al. Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions. Appl. Phys. Lett. 88, 151105 (2006).

    ADS  Google Scholar 

  72. Orlova, E. E. et al. Antenna model for wire lasers. Phys. Rev. Lett. 96, 173904 (2006).

    ADS  Google Scholar 

  73. Lee, A. W. M. et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. Opt. Lett. (in the press).

  74. Hübers, H.-W. et al. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Opt. Express 13, 5890–5896 (2005).

    ADS  Google Scholar 

  75. Bründermann, E. et al. Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. Opt. Express 14, 1829–1841 (2006).

    ADS  Google Scholar 

  76. Ajili, L. et al. High power quantum cascade lasers operating at λ 87 and 130 μm. Appl. Phys. Lett. 85, 3986–3988 (2004).

    ADS  Google Scholar 

  77. Amanti, M. I., Fischer, M., Walther, C., Scalari, G. & Faist, J. Horn antennas for terahertz quantum cascade lasers. Electron. Lett. 43, 573–574 (2007).

    Google Scholar 

  78. Sirigu, L. et al. Photonic lattice-based quantum cascade lasers at terahertz frequencies. Proc. SPIE 6386, 63860Z (2006).

    Google Scholar 

  79. Lü, J. T. & Cao, J. C. Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers. Appl. Phys. Lett. 88, 061119 (2006).

    ADS  Google Scholar 

  80. Callebaut, H., Kumar, S., Williams, B. S., Hu, Q. & Reno, J. L. Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers. Appl. Phys. Lett. 84, 645–647 (2004).

    ADS  Google Scholar 

  81. Vitiello, M. S. et al. Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers. Appl. Phys. Lett. 86, 111115 (2005).

    ADS  Google Scholar 

  82. Kröll, J. et al. in OSA Topical Meeting Optical Terahertz Science and Technology, Orlando, Florida (2007) <http://www.osa.org/meetings/topicalmeetings/OTST/program>.

    Google Scholar 

  83. Luo, H. et al. Terahertz quantum-cascade lasers based on a three-well active module. Appl. Phys. Lett. 90, 041112 (2007).

    ADS  Google Scholar 

  84. Huang, F. et al. Terahertz study of 1,3,5-trinitro-s-triazine by time-domain and Fourier transform infrared spectroscopy. Appl. Phys. Lett. 85, 5535–5537 (2004).

    ADS  Google Scholar 

  85. Shen, Y. C. et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116 (2005).

    ADS  Google Scholar 

  86. Liu, H.-B., Chen, Y., Bastiaans, G. J. & Zhang, X.-C. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 14, 415–423 (2006).

    ADS  Google Scholar 

  87. Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003).

    ADS  Google Scholar 

  88. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004).

    ADS  Google Scholar 

  89. Bjarnason, J. E., Chan, T. L. J., Lee, A. W. M., Celis, M. A. & Brown, E. R. Millimeterwave, terahertz, and mid-infrared transmission through common clothing. Appl. Phys. Lett. 85, 519–521 (2004).

    ADS  Google Scholar 

  90. Kumar, S., Williams, B. S., Hu, Q. & Reno, J. L. 1.9 THz quantum-cascade lasers with one-well injector. Appl. Phys. Lett. 88, 121123 (2006).

    ADS  Google Scholar 

  91. Scalari, G. et al. Terahertz emission from quantum cascade lasers in the quantum hall regime: evidence for many-body resonances and localization effects. Phys. Rev. Lett. 93, 237403 (2004).

    ADS  Google Scholar 

  92. Phillips, T. G. & Keene, J. Submillimeter astronomy. Proc. IEEE 80, 1662–1678 (1992).

    ADS  Google Scholar 

  93. Gao, J. R. et al. in International Workshop on Low Temperature Electronics (WOLTE 6), 11 (ESTEC, Noordwijk, The Netherlands, 2004).

    Google Scholar 

  94. Gao, J. R. et al. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer. Appl. Phys. Lett. 86, 244104 (2005).

    ADS  Google Scholar 

  95. Betz, A. L. et al. Frequency and phase-lock control of a 3 THz quantum cascade laser. Opt. Lett. 30, 1837–1839 (2005).

    ADS  Google Scholar 

  96. Barbieri, S. et al. Heterodyne mixing of two far-infrared quantum cascade lasers by use of a point-contact Schottky diode. Opt. Lett. 29, 1632–1634 (2004).

    ADS  Google Scholar 

  97. Barkan, A. et al. Linewidth and tuning characteristics of terahertz quantum cascade lasers. Opt. Lett. 29, 575–577 (2004).

    ADS  Google Scholar 

  98. Hensley, J. M. et al. in OSA Topical Meeting Optical Terahertz Science and Technology, Orlando, Florida (2007) <http://www.osa.org/meetings/topicalmeetings/OTST/program>.

    Google Scholar 

  99. Topics in Applied Physics: Terahertz optoelectronics (ed. Sakai, K.) (Springer, Berlin, 2005).

  100. Darmo, J. et al. Imaging with a terahertz quantum cascade laser. Opt. Express 12, 1879–1884 (2004).

    ADS  Google Scholar 

  101. Kim, S. M. et al. Biomedical terahertz imaging with a quantum cascade laser. Appl. Phys. Lett. 88, 153903 (2006).

    ADS  Google Scholar 

  102. Barbieri, S. et al. Imaging with THz quantum cascade lasers using a Schottky diode mixer. Opt. Express 13, 6497–6503 (2005).

    ADS  Google Scholar 

  103. Nguyen, K. L. et al. Three-dimensional imaging with a terahertz quantum cascade laser. Opt. Express 14, 2123–2129 (2006).

    ADS  Google Scholar 

  104. Lee, A. W. M., Williams, B. S., Kumar, S., Hu, Q. & Reno, J. L. Real-time imaging using a 4.3-THz quantum-cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photon. Tech. Lett. 18, 1415–1417 (2006).

    ADS  Google Scholar 

  105. Luo, H., Liu, H. C., Song, C. Y. & Wasilewski, Z. R. Background-limited terahertz quantum-well photodetector. Appl. Phys. Lett. 86, 231103 (2005).

    ADS  Google Scholar 

  106. Siegel, P. H. & Dengler, R. J. Terahertz heterodyne imaging part II: instruments. Int. J. Infrared Millimeter Waves 27, 631–655 (2006).

    Google Scholar 

  107. Dickinson, J. C. et al. Terahertz imaging of subjects with concealed weapons. Proc. SPIE 6212, 62120Q (2006).

    Google Scholar 

  108. Indjin, D. et al. Relationship between carrier dynamics and temperature in terahertz quantum cascade structures: Simulation of GaAs/AlGaAs, SiGe/Si and GaN/AlGaN devices. Semicond. Sci. Technol. 20, S237–S245 (2005).

    Google Scholar 

  109. Sun, G., Soref, R. A. & Khurgin, J. B. Active region design of a terahertz GaN/Al0.15Ga0.85N quantum cascade laser. Superlattices Microstruct. 37, 107–113 (2005).

    ADS  Google Scholar 

  110. Wingreen, N. S. & Stafford, C. A. Quantum-dot cascade laser: Proposal for an ultralow-threshold semiconductor laser. IEEE J. Quant. Electron. 33, 1170–1173 (1997).

    ADS  Google Scholar 

  111. Hsu, C.-F., O, J.-S., Zory, P. & Botez, D. Intersubband quantum-box semiconductor lasers. IEEE J. Sel. Top. Quant. Electron. 6, 491–503 (2000).

    ADS  Google Scholar 

  112. Anders, S. et al. Electroluminescence of a quantum dot cascade structure. Appl. Phys. Lett. 82, 3862–3864 (2003).

    ADS  Google Scholar 

  113. Ulbrich, N. et al. Midinfrared intraband electroluminescence from AlInAs quantum dots. Appl. Phys. Lett. 83, 1530–1532 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge G. Scalari, J. Faist, S. Barbieri, A. Dunbar, A. Tredicucci, Q. Hu, A. W. M. Lee, S. Kumar, P. Siegel, and J. R. Gao, who have provided input and/or figures for this article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B. Terahertz quantum-cascade lasers. Nature Photon 1, 517–525 (2007). https://doi.org/10.1038/nphoton.2007.166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing