Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Ten years of nonlinear optics in photonic crystal fibre

The year 2009 marks the tenth anniversary of the first report of white-light supercontinuum generation in photonic crystal fibre. This result had a tremendous impact on the field of nonlinear fibre optics and continues to open up new horizons in photonic science. Here we provide a concise and critical summary of the current state of nonlinear optics in photonic crystal fibre, identifying some of the most important and interesting recent developments in the field. We also discuss several emerging research directions and point out links with other areas of physics that are now becoming apparent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency conversion in non-supercontinuum experiments.
Figure 2: Unusual features of the quasi-CW or long pulse regime.
Figure 3: HC-PCF allows the study of diverse nonlinear effects in gases and liquids.
Figure 4: Draw-tower tapering allows fabrication of longitudinally varying dispersion and nonlinearity profiles, opening new possiblities for nonlinear optics in PCF.

References

  1. Russell, P. St. J. Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006).

    Article  ADS  Google Scholar 

  2. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Conference on Lasers and Electro-Optics (CLEO), Baltimore, postdeadline paper CPD8 (1999).

  3. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  4. Broderick, N. G. R., Monro, T. M., Bennett, P. J. & Richardson, D. J. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett. 24, 1395–1397 (1999).

    Article  ADS  Google Scholar 

  5. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  6. Knight, J. C. & Skryabin, D. V. Nonlinear waveguide optics and photonic crystal fibers. Opt. Express 15, 15365–15376 (2007).

    Article  ADS  Google Scholar 

  7. Bhagwat, A. R. & Gaeta, A. L. Nonlinear optics in hollow-core bandgap fibers. Opt. Express 16, 5035–5047 (2008).

    Article  ADS  Google Scholar 

  8. Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

    Article  ADS  Google Scholar 

  9. Hall, J. L. & Hänsch, T. W. in Femtosecond Optical Frequency Comb Technology: Principle, Operation, and Application, (eds Ye, J. & Cundiff, S. T.) 1–11 (Springer, 2005).

    Google Scholar 

  10. Beaud, P., Hodel, W., Zysset, B. & Weber, H. P. Ultrashort pulse propagation, “pulse breakup” and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron. 23, 1938–1946 (1987).

    Article  ADS  Google Scholar 

  11. Dianov, E. M., Mamyshev, P. V., Prokhorov, A. M. & Serkin, V. N. Nonlinear Effects in Optical Fibres (Harwood, 1989).

    Google Scholar 

  12. Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    Article  ADS  Google Scholar 

  13. Fulconis, J., Alibart, O., O'Brien, J., Wadsworth, W. J. & Rarity, J. G. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007).

    Article  ADS  Google Scholar 

  14. Sharping, J. E. et al. Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Opt. Express 15, 1474–1479 (2007).

    Article  ADS  Google Scholar 

  15. Xu, Y. Q., Murdoch, S. G., Leonhardt, R. & Harvey, J. D. Widely tunable photonic crystal fiber Fabry–Perot optical parametric oscillator. Opt. Lett. 33, 1351–1353 (2008).

    Article  ADS  Google Scholar 

  16. Nishizawa, N. & Goto, T. Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength. Opt. Express 10, 1151–1159 (2002).

    Article  ADS  Google Scholar 

  17. Gorbach, A. V. & Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres. Nature Photon. 1, 653–657 (2007).

    Article  ADS  Google Scholar 

  18. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  19. Podlipensky, A., Szarniak, P., Joly, N. Y., Poulton, C. G. & Russell, P. St. J. Bound soliton pairs in photonic crystal fiber. Opt. Express 15, 1653–1662 (2007).

    Article  ADS  Google Scholar 

  20. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1058 (2007).

    Article  ADS  Google Scholar 

  21. Dudley, J. M., Genty, G. & Eggleton, B. J. Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644–3651 (2008).

    Article  ADS  Google Scholar 

  22. Dudley, J. M., Genty, G. & Eggleton, B. J. Modulation control and spectral shaping of optical fibre supercontinuum generation in the picosecond regime. Appl. Phys. B doi:10.1007/s00340-008-3274-1 (2009).

  23. Solli, D. R., Ropers, C. & Jalali, B. Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008).

    Article  ADS  Google Scholar 

  24. Cumberland, B. A. Travers, J. C. Popov, S. V. & Taylor, J. R. 29 W high power CW supercontinuum source. Opt. Express 16, 5954–5962 (2008).

    Article  ADS  Google Scholar 

  25. Travers, J. C., Rulkov, A. B., Cumberland, B. A., Popov, S. V. & Taylor, J. R. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Opt. Express 16, 14435–14447 (2008).

    Article  ADS  Google Scholar 

  26. Frosz, M. H., Bang, O. & Bjarklev, A. Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. Opt. Express 14, 9391–9407 (2006).

    Article  ADS  Google Scholar 

  27. Luan, F., Skryabin, D. V., Yulin, A. V. & Knight, J. C. Energy exchange between colliding solitons in photonic crystal fibers. Opt. Express 14, 9844–9853 (2006).

    Article  ADS  Google Scholar 

  28. Korneev, N., Kuzin, E. A., Ibarra-Escamilla, B., Bello-Jimènez, M. & Flores-Rosas, A. Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses. Opt. Express 16, 2636–2645 (2008).

    Article  ADS  Google Scholar 

  29. Barviau, B., Kibler, B., Coen, S. & Picozzi, A. Towards a thermodynamic description of supercontinuum generation. Opt. Lett. 33, 2833–2835 (2008).

    Article  ADS  Google Scholar 

  30. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  31. Ouzounov, D. G. et al. Generation of megawatt solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  32. Ouzounov, D. G. et al. Soliton pulse compression in photonic bandgap fibers. Opt. Express 13, 6153–6159 (2005).

    Article  ADS  Google Scholar 

  33. De Matos, C. J. S. et al. All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers. Phys. Rev. Lett. 93, 103901 (2004).

    Article  ADS  Google Scholar 

  34. Benabid, F. Hollow-core photonic bandgap fibre: new light guidance for new science and technology. Phil. Trans. R. Soc. A 364, 3439–3462 (2006).

    Article  ADS  Google Scholar 

  35. Benabid, F., Bouwmans, G., Knight, J. C. & Russell, P. St. J. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett. 93, 123903 (2004).

    Article  ADS  Google Scholar 

  36. Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    Article  ADS  Google Scholar 

  37. Benabid, F., Light, P. S., Couny, F. & Russell, P. St. J. Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Opt. Express 13, 5694–5703 (2005).

    Article  ADS  Google Scholar 

  38. Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, M. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    Article  ADS  Google Scholar 

  39. Couny, F., Benabid, F. & Light, P. S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. Phys. Rev. Lett. 99, 143903 (2007).

    Article  ADS  Google Scholar 

  40. Bozolan, A., de Matos, C. J., Cordeiro, C. M. B., dos Santos, E. M. & Travers, J. C. Supercontinuum generation in a water-core photonic crystal fiber. Opt. Express 16, 9671–9676 (2008).

    Article  ADS  Google Scholar 

  41. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. St. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  ADS  Google Scholar 

  42. Hensley, C. J., Broaddus, D. H., Schaffer, C. B. & Gaeta, A. L. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Opt. Express 15, 6690–6695 (2007).

    Article  ADS  Google Scholar 

  43. Travers, J. C. et al. Optical pulse compression in dispersion decreasing photonic crystal fiber. Opt. Express 15, 13203–13211 (2007).

    Article  ADS  Google Scholar 

  44. Gérôme, F., Cook, K., George, A. K., Wadsworth, W. J. & Knight, J. C. Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression. Opt. Express 15, 7126–7131 (2007).

    Article  ADS  Google Scholar 

  45. Tse, M. L. V., Horak, P., Poletti, F. & Richardson, D. J. Designing tapered holey fibers for soliton compression. IEEE J. Quantum Electron. 44, 192–198 (2008).

    Article  ADS  Google Scholar 

  46. Genty, G., Coen, S. & Dudley, J. M. Fiber supercontinuum sources. J. Opt. Soc. Am. B 24, 1771–1785 (2007).

    Google Scholar 

  47. Monro, T. M. & Ebendorff-Heidepriem, H. Progress in microstructured optical fibers. Annu. Rev. Mater. Res. 36, 467–495 (2006).

    Article  ADS  Google Scholar 

  48. Price, J. H. V. et al. Mid-IR supercontinuum generation from non-silica microstructured optical fibers. IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).

    Article  ADS  Google Scholar 

  49. Domachuk, P. et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008).

    Article  ADS  Google Scholar 

  50. Xia, C. et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Opt. Express 15, 865–871 (2007).

    Article  ADS  Google Scholar 

  51. Hsieh, I. W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242–15249 (2007).

    Article  ADS  Google Scholar 

  52. Ding, W. et al. Solitons and spectral broadening in long silicon-on-insulator photonic wires. Opt. Express 16, 3310–3319 (2008).

    Article  ADS  Google Scholar 

  53. Lamont, M. R., Luther-Davies, B., Choi, D., Madden, S. & Eggleton, B. J. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008).

    Article  ADS  Google Scholar 

  54. Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604–16644 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.M.D. thanks the Institut Universitaire de France for support. J.R.T. is a Royal Society Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley, J., Taylor, J. Ten years of nonlinear optics in photonic crystal fibre. Nature Photon 3, 85–90 (2009). https://doi.org/10.1038/nphoton.2008.285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing