Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanometric optical tweezers based on nanostructured substrates

Abstract

The ability to control the position of a mesoscopic object with nanometric precision is important for the rapid progress of nanoscience. One of the most promising tools to achieve such control is optical tweezers, which trap objects near the focus of a laser beam. However, the drawbacks of conventional tweezers include a trapping volume that is diffraction-limited and significant brownian motion of trapped nanoobjects. Here, we report the first experimental realization of three-dimensional nanometric optical tweezers that are based on nanostructured substrates. Using electromagnetically coupled pairs of gold nanodots in a standard optical tweezers set-up, we create an array of subwavelength plasmonic optical traps that offer a significant increase in trapping efficiency. The nanodot optical near-fields reduce the trapping volume beyond the diffraction limit and quench brownian motion of the trapped nanoparticles by almost an order of magnitude as compared to conventional tweezers operating under the same trapping conditions. Our tweezers achieve nanoscale control of entities at significantly smaller laser powers and open new avenues for nanomanipulation of fragile biological objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotweezers set-up.
Figure 2: Nanostructured substrates.
Figure 3: Nanometric trapping and quenching of brownian motion near the nanostructured substrate.
Figure 4: Histogram of particle displacement for the trapping shown in Fig. 3.
Figure 5: Escape speeds for trapped beads.

Similar content being viewed by others

References

  1. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (2000).

    Article  ADS  Google Scholar 

  2. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  ADS  Google Scholar 

  3. Lewis, A. et al. Near-field optics: From subwavelength illumination to nanometric shadowing. Nature Biotechnol. 21, 1378–1386 (2003).

    Article  Google Scholar 

  4. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  5. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  6. Crocker, J. C. & Grier, D. G. When like charges attract: The effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897–1900 (1996).

    Article  ADS  Google Scholar 

  7. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

    Article  ADS  Google Scholar 

  8. Cran-McGreehin, S. J., Dholakia, K. & Krauss T. F. Monolithic integration of microfluidic channels and semiconductor lasers. Opt. Express 14, 7723–7729 (2006).

    Article  ADS  Google Scholar 

  9. Molloy, J. E. & Padgett, M. J. Lights, action: optical tweezers. Cont. Phys. 43, 241–258 (2002).

    Article  ADS  Google Scholar 

  10. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  11. Dholakia, K. & Reece, P. Optical manipulation takes hold. Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  12. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J., Landick, W.R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    Article  ADS  Google Scholar 

  13. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

  14. Grigorenko, A. N. et al. Nanofabricated media with negative magnetic permeability at visible frequencies. Nature 438, 335–338 (2005).

    Google Scholar 

  15. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  ADS  Google Scholar 

  16. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  17. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  18. Kawata, S. & Sugiura, T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett. 17, 772–774 (1992).

    Article  ADS  Google Scholar 

  19. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    Article  ADS  Google Scholar 

  20. Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett. 30, 1009–1011 (2005).

    Article  ADS  Google Scholar 

  21. Volpe, G., Quidant, R., Badenes, G. & Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 96,, 238101 (2006).

    Article  ADS  Google Scholar 

  22. Reece, P. J., Garcés-Chávez, V. & Dholakia, K. Near-field optical micromanipulation with cavity enhanced evanescent waves. Appl. Phys. Lett. 88, 221116 (2006).

    Article  ADS  Google Scholar 

  23. Garcés-Chávez, V. et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).

    Article  ADS  Google Scholar 

  24. Gu, M., Haumonte, J.-B., Micheau, Y., Chon, J. W. M. & Gan, X. Laser trapping and manipulation under focused evanescent wave illumination. Appl. Phys. Lett. 84, 4236–4238 (2004).

    Article  ADS  Google Scholar 

  25. Grigorenko, A. N. et al. An antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl. Phys. Lett. 88, 124103 (2006).

    Article  ADS  Google Scholar 

  26. Panina, L. V., Grigorenko, A. N. & Makhnovskiy, D. P. Metal–dielectric medium with conducting nanoelements. Phys. Rev. B 66, 155411 (2002).

    Article  ADS  Google Scholar 

  27. Su, K.-H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    Article  ADS  Google Scholar 

  28. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    Article  ADS  Google Scholar 

  29. Wright, A. J., Wood, T. A., Dickinson, M. R., Gleeson, H. F. & Mullin, T. The transverse trapping force of an optical trap: factors affecting its measurement. J. Mod. Opt. 50, 1521–1532 (2003).

    Article  ADS  Google Scholar 

  30. Kuiru, L., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    Article  ADS  Google Scholar 

  31. Wright, W. H., Sonek, G. J. & Berns, M. W. Parametric study of the forces on microspheres held by optical tweezers. Appl.Opt. 33, 1735–1748 (1994).

    Article  ADS  Google Scholar 

  32. Happell, J. & Brenner, H. Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice Hall, Englewood Cliffs, NJ, 1965).

  33. Sidorov, A. R., Zhang, Y., Grigorenko, A. N. & Dickinson, M. R. Nanometric optical tweezers based on nanostructured substrates. Opt. Commun. 278, 439–444 (2007).

    Article  ADS  Google Scholar 

  34. Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Technique 44, 378–386 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by EPSRC (UK) and the Paul Instrument Fund. We thank H. F. Gleeson for kind permission to use the optical tweezers set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Grigorenko.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A., Roberts, N., Dickinson, M. et al. Nanometric optical tweezers based on nanostructured substrates. Nature Photon 2, 365–370 (2008). https://doi.org/10.1038/nphoton.2008.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing